Confusion about convolution theorem in matlab

13 visualizzazioni (ultimi 30 giorni)
Convolution theorem in fourier transform states:
Fourier transform of a convolution of two vectors A and B is pointwise product of Fourier transform of each vector. (Ref: https://en.wikipedia.org/wiki/Convolution_theorem)
Now let A=B=[0.7, 0.2, 0.1], pointwise product of A and B can be obtained through the code:
fft(A).*fft(A)
The result is [1.000000000000000 + 0.000000000000000i, 0.295000000000000 - 0.095262794416288i, 0.295000000000000 + 0.095262794416288i].
Convolution of A and B can be obtained by inverse Fourier transform:
ifft(fft(A).*fft(A))
The result is C=[0.530000000000000 0.290000000000000 0.180000000000000].
However, convolution of A and B can be calculated in the matlab code:
conv(A,A)
The result is C'=[0.490000000000000 0.280000000000000 0.180000000000000 0.040000000000000 0.010000000000000].
The result vectors C is not equal to C', contradictory to the convolution theorem. This example shows my confusion on Fourier tranform in matlab code and convolution theorem. Would anyone help me to understand this?
Thanks very much:)
  1 Commento
Arkaprabho Pal
Arkaprabho Pal il 21 Apr 2020
Modificato: Arkaprabho Pal il 21 Apr 2020
The convolution theorem says, roughly, that convolving two sequences is the same as multiplying their Fourier transforms. In order to make this precise, it is necessary to pad the two vectors with zeros and ignore roundoff error. Also make sure to use 'full' keyword in conv function.
t = linspace(0,1,200)
x = sin(2*pi*t)
y = exp(-2*t)
X = fft([x zeros(1,length(y)-1)])
Y = fft([y zeros(1,length(x)-1)])
then conv(x,y,'full') = ifft(X.*Y)

Accedi per commentare.

Risposta accettata

Matt J
Matt J il 16 Set 2017
Modificato: Matt J il 16 Set 2017
There are differences between the continuous-domain convolution theorem and the discrete one. In particular, the discrete domain theorem says that ifft(fft(A).*fft(B)) gives the circulant convolution of A with B. You can get obtain a linear convolution result from a circulant convolution if you do sufficient zero-padding:
>> ifft(fft(A,5).*fft(A,5),5)
ans =
0.4900 0.2800 0.1800 0.0400 0.0100
  5 Commenti
Image Analyst
Image Analyst il 18 Set 2017
Every time you convolve A with something, it adds a length of A to the something. So A**A is twice as long A**(A**A) is 3 times as long, etc. Don't do the padding yourself or else it will be even longer. Just specify the 'full' option in conv() or conv2() and it will enlarge the array by the correct amount for you.
Felix Wong
Felix Wong il 19 Set 2017
Modificato: Felix Wong il 19 Set 2017
Thanks @Image Analyst. I have tried that, and using default 'full' option.
I believe it is related to FFT in the synax 'fft(A,n)'. An improperly n will result some misleading result for ifft(fft(A,n).*fft(A,n),n).
Since B=conv(A,A) has a length 2L-1 (given length of A is L), I guess n should be set to no less than 2L-1. I am not sure if it is correct?

Accedi per commentare.

Più risposte (1)

Image Analyst
Image Analyst il 16 Set 2017
Try this:
A = [0.7, 0.2, 0.1]
B = [0.7, 0.2, 0.1]
Cconv = conv(A, B)
% Now if C = A ** B
% Then fftC = fftA * fftB
fftA = fft(A)
fftB = fft(B)
fftC = fftA .* fftB
% If we inverse transform this to get C back:
% ifft(fftC) = C = ifft(fftA .* fftB)
C2 = ifft(fftC)
C3 = ifft(fftA .* fftB)
I think the difference you're seeing in Cconv and C2 or C3 is that CConv is the full convolution - 5 elements - while doing it the fft way, you are clipping to the same size as your input arrays - 3 elements - and so inherently you have a rect function in there multiplying your A and B. And the convolution of a rect is a triangle function, which, because your array is so small, wreaks havoc on your values. With much larger arrays, it won't be as noticeable.
  1 Commento
Felix Wong
Felix Wong il 17 Set 2017
Thank you for the answer.
Actually, I am trying to calculate N times convolution of an input vector A of length L, by using FFT algorithm. The length L is relatively small. I am not sure if your suggestions can work for my situation, since discrete FFT method will truncate vectors.

Accedi per commentare.

Categorie

Scopri di più su 傅里叶分析和滤波 in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!