error-index exceeds matrix dimension
3 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
In the following code i get error a s
P1 = [-1 -1 2 2; 0 5 0 5];
Tar = [0 ;1 ]
indices=crossvalind('kfold',Tar,10);
for i=1:10
test=(indices==i);trains= ~test
tst = (indices==i);
val = (indices== mod(i+1,10));
trn = ~[tst,val];
net=newff(P1(:,trains),Tar(:,trains),2);
net=init(net);
[net,tr]=train(net,P1(:,trains),Tar(:,trains));
out = round(sim(net,P(:,test)));
end
Index exceeds matrix dimensions.
Error in cfour (line 58)
net=newff(P1(:,trains),Tar(:,trains),2);
please help
0 Commenti
Risposta accettata
Walter Roberson
il 17 Apr 2012
That code is going to generate an error unless "indices" is of length 1 exactly. If it is longer than 1, then "test" and "train" will be longer than 1, and would then be too long to use as logical vectors against the columns of the single-column Tar array.
Più risposte (2)
Andreas Goser
il 17 Apr 2012
net=newff(P1(:,trains),Tar(:,trains),2);
throws an error in the first run, as Tar has no second dimension. Probably you mean:
net=newff(P1(:,trains),Tar(trains),2);
3 Commenti
Andreas Goser
il 17 Apr 2012
You just asked why you got this error. Now you know ;-)
I may know more about MATLAB, but hope fully you know more about neural networks... The message "Inputs and targets have different numbers of samples." That sounds like an actionable error message, isn't it?
Greg Heath
il 22 Apr 2012
1. The input and target matrices must have the same number of columns:
Tar = [ 0 0 1 1 ]
[ I N ] = size( P1) % [ 2 4 ] [ O N ] = size(Tar) % [ 1 4 ]
k = 10
indices=crossvalind('kfold',Tar,k)
2. a. It doesn't make sense to use k > N
b.Instead of using CROSSVALIND from the Bioinformatics TBX, the algorithm
might be more portable if you use CROSSVAL from the Statistics TBX.
3. trains= ~test
Rename. TRAINS is a MATLAB function.
Hope this helps.
Greg
2 Commenti
Greg Heath
il 22 Apr 2012
Typical nontrivial classification examples should have classes with
many more I/O training pairs than input dimensions.
For the FisherIris example/demo (c = 3, I = 4, N = 150).
Although that ratio is
N/(3*4) = 12.5,
the scatter plot in the PetalLength/PetalWidth plane indicates
that the 3 classes are linearly separable with two hidden nodes.
Hope this helps.
Greg
Vedere anche
Categorie
Scopri di più su Matrix Indexing in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!