Trial-and-error or K-fold cross-validation

3 visualizzazioni (ultimi 30 giorni)
Hello,
As researcher, i would like to ask for efficient algorithm to determine ANN's architecture (number of hidden neurons in one hidden layer),and i can not choose between Trial-and-Error and K-Fold Cross-validation. Indeed, most of researchers use in their articles K-Fold Cross-validation and i do not know why ? Thank you for you answer.

Risposta accettata

Greg Heath
Greg Heath il 1 Ott 2017
If you search in both the NEWSGROUP and ANSWERS you will see zillions of examples of my two loop solution:
%Outer loop over number of hidden nodes, e.g.,
rng(0), j=0
for h = Hmin:dH:Hmax
j = j + 1
net = fitnet(h);
etc ...
%Inner loop over Ntrials sets of random initial weights
for i = 1:Ntrials
net = configure(net,x,t);
etc ...
Hope this helps.
Thank you for formally accepting my answer
Greg
  1 Commento
Hamza Ali
Hamza Ali il 1 Ott 2017
Thank you Mr Greg. i will keep you informed of the results in order to discuss them.

Accedi per commentare.

Più risposte (0)

Categorie

Scopri di più su Deep Learning Toolbox in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by