I had left out the specific transfer function i am working with to find a more general result. if you are interested, the specific function i am working with is
0.0001163 s^2 + 0.07919 s + 1.612
-----------------------------------------------------------------------
0.0001112 s^5 + 0.003739 s^4 + 0.05894 s^3 + 0.4631 s^2 + 0.7542 s + 1.612
Continuous-time transfer function.
the decomposition i determined with 'residue' function
b=[0.0001163 0.07919 1.612];
a=[0.0001112 0.003739 0.5894 0.4631 0.6542 1.612];
[r,p,k]=residue(b,a);
is
r =
0.0005 + 0.0007i
0.0005 - 0.0007i
-0.2701 - 0.3806i
-0.2701 + 0.3806i
0.5392 + 0.0000i
p =
-16.4209 +70.7384i
-16.4209 -70.7384i
0.3089 + 1.3667i
0.3089 - 1.3667i
-1.4001 + 0.0000i
k =
[]
using this result the inverse laplace transform
ilaplace(((0.0005 + 0.0007i)/(s-(-16.4209 +70.7384i)))+((0.0005 - 0.0007i)/(s-(-16.4209 -70.7384i)))+((-0.2701 - 0.3806i)/(s-(0.3089 + 1.3667i)))+((-0.2701 + 0.3806i)/(s-(0.3089 - 1.3667i)))+((0.5392 + 0.0000i)/(s-(-1.4001 + 0.0000i))))
gives the result
(337*exp(-(14001*t)/10000))/625 - exp(t*(3089/10000 - 13667i/10000))*(2701/10000 - 1903i/5000) - exp(t*(3089/10000 + 13667i/10000))*(2701/10000 + 1903i/5000) + exp(t*(- 4622072445068011/281474976710656 - 88423i/1250))*(1/2000 - 7i/10000) + exp(t*(- 4622072445068011/281474976710656 + 88423i/1250))*(1/2000 + 7i/10000)
as i stated previously, the plot of this result is similar

but markedly different (more exagerated) than the plot of 'impulse' of the original transfer function.

i am unsure where i am making a mistake, but i dont believe i have correctly found the impulse response function of the given transfer function



