Differential equation system in Optimization Toolbox

1 visualizzazione (ultimi 30 giorni)
Hi, everyone.
I'm trying to solve dynamic programming problem. I have differential equation system like that one:
dydt = zeros(2,1);
dydt(1) = z(1);
dydt(2) = z(2)-z(1);
With constraints:
z>=0;
z(1)+z(2)<=x(2);
z(2)<=x(1);
x(2)>=0;
I must maximize x(2) on period T=5.
How can I optimize DES and find z with Optimization Toolbox?
Thank you.
  8 Commenti
Richard Brown
Richard Brown il 30 Apr 2012
Are the z variables constrained to take on integer values?
Artyom
Artyom il 30 Apr 2012
No, it can take any values. Except constraints of course.

Accedi per commentare.

Risposte (1)

Richard Brown
Richard Brown il 1 Mag 2012
Your problem is a linear program in the arrays x1, x2, z1, z2. Because the RHS of the ODEs is piecewise constant, the problem can be reformulated as a series of difference equations. You therefore have the following linear equality constraints:
k = 0, ..., 4:
x1[k+1] = x1[k] + z1[k]
x2[k+1] = x2[k] + z2[k] - z1[k]
where x1[0] and x2[0] are known initial conditions
And you have the following linear inequality constraints:
k = 0, ..., 4:
z1[k] >= 0
z2[k] >= 0
z1[k] + z2[k] <= x2[k]
z2[k] <= x1[k]
z2[k] - z1[k] >= -x2[k]
Your cost is also linear:
c(z1, z2, x1, x2) = x2[5]
All of this defines a linear program that you can solve with linprog. All you require is a little bookkeeping to formulate the constraint matrices (and conversion to ones-based indexing)

Categorie

Scopri di più su Linear Programming and Mixed-Integer Linear Programming in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by