Caught in loop
1 visualizzazione (ultimi 30 giorni)
Mostra commenti meno recenti
My code is as follows:
alpha = 0.5;
beta = 0.1;
a_0 = 1;
dr = 0.1;
dt = input('Value of dt:');
h = 0.001;
c_inf = 0;
c_a = 1;
c_s = 2;
mesh_points = 3;
rho = dt/(dr)^2;
R= 30;
N_i = R/dr;
t_diss = 5.8;
N_t = t_diss/dt;
if rho >= 0.5;
disp('Invalid dt value');
return;
end
for i=1:N_i;
r(i)=(i-1)*dr;
if r(i)< a_0
c(i,1)= c_s;
else
c(i,1)= c_inf;
end
end
a(1) = a_0;
for j = 1:N_t -1;
b_1 = floor (a(j)/dr) + 2;
b_2 = b_1 + 1;
c_ah = (a(j)+h-b_1)*(a(j)+h-b_2)*(c_a)/((a(j)-b_1)*(a(j)-b_2))+h*(a(j)+h-b_2)*c(b_1,j)/((b_1-a(j))*(b_1-b_2)) + h*(a(j)+h-b_1)*c(b_2,j)/((b_2-a(j))*(b_2-b_1));
dc_dr = ((c_ah)-c_a)/h;
a(j+1) = a(j) +dt*beta*dc_dr;
for i=2:N_i - 1;
if r(i) > a(j+1);
d = rho - (rho/(i-1)) - (a(j)^2)*(alpha-1)*(a(j+1)-a(j))/(2*(i-1)^2*(dr)^3);
e = 1-2*rho;
f = rho + (rho/(i-1)) + (a(j)^2)*(alpha-1)*(a(j+1)-a(j))/(2*(i-1)^2*(dr)^3);
c(i, j+1) = d*c(i-1,j) + e*c(i,j) + f*c(i+1, j);
elseif r(i) == a(j+1);
c(i,j+1) = c_a;
else c(i,j+1) = c_s;
end
disp(c(i,j));
end
c(1, j+1) = c(2, j+1);
end
It basically calculates concentration near a dissolving sphere but when it gets to disp(c(i,j)) I get caught in loop of displaying numbers that change periodically. Any ideas?
0 Commenti
Risposta accettata
Jan
il 7 Mag 2012
And some cleanup:
...
% Vectorization of the "for i=1:N_i;" loop:
r = (0:N_i) * dr;
c = zeros(N_i, N_t - 1); % Pre-allocate!
c(:, 1) = c_inf;
c(r < a_0, 1) = c_s;
...
dr3 = dr ^ 3;
...
% Reduce repeated calculations inside the "for j = 1:N_t -1" loop:
ajp1 = a(j) +dt*beta*dc_dr;
a(j+1) = ajp1;
tmp1 = (a(j)^2) * (alpha-1) * (ajp1-a(j)) / (2 * dr3);
for i = 2:N_i - 1
if r(i) > ajp1
tmp2 = rho / (i-1) + tmp1 / ((i-1)^2);
d = rho - tmp2;
e = 1 - 2 * rho;
f = rho + tmp2;
c(i, j+1) = d*c(i-1,j) + e*c(i,j) + f*c(i+1, j);
elseif r(i) == ajp1
c(i, j+1) = c_a;
else
c(i, j+1) = c_s;
end
% disp(c(i,j));
end
5 Commenti
Più risposte (1)
Richard Brown
il 7 Mag 2012
Your code works fine. If you remove the disp statement (which is causing it to slow down heaps), you'll find that it runs completely in around 10 seconds or so.
2 Commenti
Vedere anche
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!