how to predict from a trained neural network ?
5 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Hello I am trying to use neural network to make some prediction based on my input and target data. I have read all related tutorial in Matlab and also looked at the matlab examples. I kinda learned how to develop a network but I dont know how to use this train network to make some prediction ? is there any code that im missing ? does anyone have a sample script that can be shared here?
that's what I have, for example : x=[1 2 3;4 5 3] t=[0.5 0.6 0.7] , net=feedforwardnet(10) , net=train(net,x,t) , perf=perform(net,y,t)
how can I predict the output for a new set of x (xprime=[4 2 3;4 7 8]) based on this trained network? thanks
0 Commenti
Risposta accettata
Greg Heath
il 16 Gen 2018
1. Your code should yield an error because you have not defined y.
here are two ways to define output y, error e and normalized mean square error NMSE (= 1-Rsquare)
1. [ net tr ] = train(net,x,t);
y = net(x);
e = t-y;
2. [ net tr y e ] = train(net,x,t); % My favorite
then, in general,
NMSE = mse(e)/mean(var(t',1))
or for 1-dimensional outputs
NMSE = mse(e)/var(t,1)
Hope this helps.
Greg
0 Commenti
Più risposte (1)
Mritula C
il 14 Feb 2019
Hi How do you predicted with a new test class?
1 Commento
Greg Heath
il 15 Feb 2019
- You misplaced your commented question into an Answer Box.
- This is a regression prolem. Your question involves classification.
Greg
Vedere anche
Categorie
Scopri di più su Sequence and Numeric Feature Data Workflows in Help Center e File Exchange
Prodotti
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!