Solve Partial Differential Equation
1 visualizzazione (ultimi 30 giorni)
Mostra commenti meno recenti
Let D=(d/dx+fn d/dy) fn=f(xn,yn) Then, Df=(d/dx+fn d/dy)f=fx+ffy D2f=(d/dx+fd/dy)^2 f(xn,yn) =(d/dx+f d/dy) (fx + ffy) Then, how can I find D4f using MATLAB?
0 Commenti
Risposte (1)
SAI SRUJAN
il 27 Mar 2024
Hi soe,
I understand that you are trying to solve a partial differential equation.
To find 'D4f' using MATLAB, you can use the Symbolic Math Toolbox. Please go through the following code snippet to proceed further,
syms x y f
fn = f(x, y);
D = diff(f, x) + fn * diff(f, y);
D2 = diff(D, x) + fn * diff(D, y);
D3 = diff(D2, x) + fn * diff(D2, y);
D4 = diff(D3, x) + fn * diff(D3, y);
In this code, we define the symbolic variables 'x', 'y', and 'f'. Then, we define 'fn' as a function of 'x' and 'y'. We calculate 'D'and we continue this process to calculate 'D2', 'D3', and finally 'D4', which represents the fourth derivative of 'f' with respect to 'x' and 'y'.
For a comprehensive understanding of the 'diff' function in MATLAB, please refer to the following documentation.
I hope this helps!
0 Commenti
Vedere anche
Categorie
Scopri di più su Calculus in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!