How to use Neural Network Error as a Feedback Input
1 visualizzazione (ultimi 30 giorni)
Mostra commenti meno recenti
David Franco
il 9 Feb 2018
Commentato: David Franco
il 2 Giu 2019
Using neural network error as a feedback input helps reduce the overall network error and increase forecasting accuracy ( Wahheb et al. 2016).
How can I supply my Neural Network with its own error?
References:
Waheeb W, Ghazali R, Herawan T (2016) Ridge Polynomial Neural Network with Error Feedback for Time Series Forecasting. PLoS ONE 11(12): e0167248. https://doi.org/10.1371/journal.pone.0167248
0 Commenti
Risposta accettata
Waddah Waheeb
il 1 Giu 2019
The code to feed back network error as an input can be downloaded from the following link:
Hope this helps!
3 Commenti
Waddah Waheeb
il 2 Giu 2019
Modificato: Waddah Waheeb
il 2 Giu 2019
During training, errors are used to update the weights. But in the given code, the past error is used as an input too. Based on the literature in time series forecasting, this type of modelling is used to model nonlinear moving-average processes (e.g., unpredictable events or past shocks) more directly. Please have a look at this link.
Più risposte (1)
Greg Heath
il 13 Feb 2018
THAT IS WHAT HAPPENS AUTOMATICALLY WHEN YOU TRAIN THE NET ! SEE THE FIGURE
net = train(net,x,t)
figure
Hope this helps.
Thank you for formally accepting my answer
Greg
0 Commenti
Vedere anche
Categorie
Scopri di più su Sequence and Numeric Feature Data Workflows in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!