how to solve definite integral where the limits itself contain the variable to be integrated and also without using iteration method.

5 visualizzazioni (ultimi 30 giorni)
%finding Id without iteration
clc
epsi = 12.47*10^-12*8.85;
Dd = 5*10^-9;
Di = 5*10^-9;
a = 0.125*10^-20*1.6*10^-19;
z = 100*10^-6;
Vs = 2.63*10^5;
G0 = (q^2*epsi*z*Vs)/(q^2*(Dd+Di)+epsi*a);
Vg = 0;
Vt = -0.485;
Rs = 12;
Rd = 12;
Vd = 0;
t0 = Id/(G0*(Vg-Vt-Id*Rs));
t1 = Id/(G0*(Vg-Vt-Vd+Id*Rd));
mu = 0.93;
L = 100*10^-9;
A = -(Vs*L*G0)/mu;
r = integral(@(t)1./(t.^2.*log(1-t)),t0,t1);
Id=A/r
  4 Commenti
neetika sharma
neetika sharma il 8 Mar 2018
actually we need to calculate Id which is in the limits t0 and t1. is it possible to solve without giving initial guess value of Id?

Accedi per commentare.

Risposte (1)

Walter Roberson
Walter Roberson il 8 Mar 2018
If the limits of a 1 dimensional integral contain the variable to be integrated over, then you do not have a definite integral and you cannot solve the problem with a numeric integration.
1/(t^2*log(1-t)) does not have any obvious closed form solution, so unless you can research and find a formula for it, you will need to work numerically -- which would require that you had numeric values for q and Id.

Categorie

Scopri di più su Numerical Integration and Differential Equations in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by