Equation: X”-6x’+13x = t+3sin(t) Initial Value: x(0)=1 t є [0,1] Method: Runge-Kutta II Step Sizes: h=0.1 , h=0.03

1 visualizzazione (ultimi 30 giorni)
I want to solve it by the Matlab only. but facing the Problem . Can someone Please help me out?
  3 Commenti
Tariq Malik
Tariq Malik il 30 Mar 2018
Modificato: James Tursa il 30 Mar 2018
This is the code that I am using.
intmin=0;
intmax=1;
numnodes=5;
f=@(t,x) t+3*(sin(t));
inival=1;
h=(intmax-intmin)/(numnodes-1);
t=zeros(1,numnodes);
x=zeros(1,numnodes);
X=zeros(1,numnodes);
t(1)=intmin;
x(1)=inival;
X(1)=inival;
for i=2:numnodes;
t(i)=t(i-1)+h;
k1=f(t(i-1),x(i-1));
k2=f(t(i-1)+h/2,x(i-1)+(h/2)*k1);
x(i)= x(i-1)+h*k2;
X(i)=X(i-1)+h*f(t(i-1),X(i-1));
end
figure
plot(t,x,'.-',t,X,'-*')
hold on
syms t x(t) sym(f)
eqn=diff(x,t)==f(t,x(t));
cond1=x(intmin)==inival;
odesol=dsolve(eqn,cond1);
odesolfun=@(t) eval(odesol);
tt=linspace(intmin,intmax,100*(ceil(intmax-intmin)));
xx=odesolfun(tt);
plot(tt,xx,'r')
hold off

Accedi per commentare.

Risposta accettata

Abraham Boayue
Abraham Boayue il 31 Mar 2018
Modificato: Abraham Boayue il 31 Mar 2018
The first thing you need to do is to write the ode as two first order equations and use the code below. You will be required to supply two initial conditions for the 1s order equations. Use the one that you are given plus another of your choice.
function [t,x,y,N] = Runge2_2eqs(f1,f2,to,tfinal,xo,yo,h)
% This function implements the Rk2 method.
t = to;
N = ceil((tfinal-to)/h);
x = zeros(1,N);
y = zeros(1,N) ;
x(1) = xo;
y(1) = yo;
for i = 1:N
t(i+1) = t(i)+h;
Sx1 = f1(t(i),x(i),y(i));
Sy1 = f2(t(i),x(i),y(i));
Sx2 = f1(t(i)+h, x(i)+Sx1*h, y(i)+Sy1*h);
Sy2 = f2(t(i)+h, x(i)+Sx1*h, y(i)+Sy1*h);
x(i+1) = x(i) + h/2*(Sx1+Sx2);
y(i+1) = y(i) + h/2*(Sy1+Sy2);
end
end
This is the mfile.
xo = 1;
yo = 0;
h = [.1 0.03];
to = 0;
tfinal = 20;
M = ceil((tfinal-to)/h(2));
dx1 = @(t,x1,x2) x2;
dx2 = @(t,x1,x2) 6*x2 -13*x1 + t + 3*sin(t);
% When you reduce the equation to two first order, x will be the solution
% of the ode, i.e x'' and y is its derivative, x'.
for i = 1: length(h)
if (i== 1) % This for the case when h = 0.1
[t,x,y,N] = Runge2_2eqs(dx1,dx2,to,tfinal,xo,yo,h(i));
y1 = x;
y2 = y;
else % and for the case when h = 0.03
[t,x,y,N] = Runge2_2eqs(dx1,dx2,to,tfinal,xo,yo,h(1));
x3 = x;
x4 = y;
end
end
t1 = t(1):(t(end)-t(1))/(M-1):t(end);
figure(1);
subplot(121)
plot(t1,y1, '-o')
hold on
plot(t1,y2,'-o')
legend('Dfx1','Dfx2')
title('Solution to two systems of ODEs using RK2, h= 0.1')
xlabel('x')
ylabel('y')
xlim([to tfinal])
grid
subplot(122)
plot(t,x3,'linewidth',2,'color','b')
hold on
plot(t,x4,'linewidth',2,'color','r')
legend('Dfx1','Dfx2')
title('Solution to two systems of ODEs using RK2, h = 0.03')
xlabel('x')
ylabel('y')
xlim([to tfinal])
grid
% Using ode 45 just to prove that the solution with RK2 is correct.
F = @(t,y) [ y(2); (6*y(2) -13*y(1) + t + 3*sin(t)) ];
t0 = 0;
tf = 20;
delta = (tf-t0)/(201-1);
tspan = t0:delta:tf;
ic = [1 0];
[t,y] = ode45(F, tspan, ic);
figure
plot(t,y(:,1),'-o')
hold on
plot(t,y(:,2),'-o')
a = title('Using ode45');
legend('x','x_{prime}');
set(a,'fontsize',14);
a = ylabel('y');
set(a,'Fontsize',14);
a = xlabel('t [0 20]');
set(a,'Fontsize',14);
xlim([t0 tf])
grid
grid minor;
  1 Commento
Tariq Malik
Tariq Malik il 7 Apr 2018
Modificato: Walter Roberson il 8 Apr 2018
intmin=0;
intmax=1;
inival1=0;
inival2=0;
numnodes = 10;
t(1) = intmin;
x1(1)= inival1;
x2(1)= inival2;
t =zeros(1,numnodes);
x1=zeros(1,numnodes);
x2=zeros(1,numnodes);
h=(intmax-intmin)/(numnodes-1);
f1 = @(t,x1,x2) x2;
f2 = @(t,x1,x2) 6*x2-13*x1+t+3*sin(t);
numnodes1=300;
a=zeros(1,numnodes1);
b1=zeros(1,numnodes1);
b2=zeros(1,numnodes1);
a(1)=intmin;
b1(1)=inival1;
b2(1)=inival2;
g=(intmax-intmin)/(numnodes1-1);
F1 = @(a,b1,b2) b2;
F2 = @(a,b1,b2) 6*b2-13*b1+a+3*sin(a);
for i = 2:numnodes
t(i) = t(i-1)+h;
k1 = f2(t(i-1),x1(i-1),x2(i-1));
k2 = f2(t(i-1)+h/2,x1(i-1)+(h/2)*k1,x2(i-1)+(h/2)*k1);
k3 = f2(t(i-1)+h/2, x1(i-1)+(h/2)*k2,x2(i-1)+(h/2)*k2);
x1(i) = x1(i-1)+(h/6)*(k1+4*k2+k3);
x2(i) = x2(i-1)+(h/6)*(k1+4*k2+k3);
end
for i = 2:numnodes1
a(i) = a(i-1)+g;
k1 = F2(a(i-1),b1(i-1),b2(i-1));
k2 = F2(a(i-1)+g/2,b1(i-1)+(g/2)*k1,b2(i-1)+(g/2)*k1);
k3 = F2(a(i-1)+g/2, b1(i-1)+(g/2)*k2,b2(i-1)+(g/2)*k2);
b1(i) = b1(i-1)+(g/6)*(k1+4*k2+k3);
b2(i) = b2(i-1)+(g/6)*(k1+4*k2+k3);
end
figure
plot(t,x1,'.-',t,x2,'-*')
hold on
syms t x(t)
sym(x)
eqn=diff(x,t,2) == diff(x,t)-13*x+t+3*sin(t);
cond1==1;
cond2==0;
odesol=dsolve(eqn,cond1,cond2);
odesolfun=@(t) eval(odesol);
tt=linspace(intmin,intmax,100*(ceil(intmax-intmin)));
xx=odesolfun(tt);
legend("Runge-Kutta 2", "0.1", "Exact");
plot(tt,xx,'r')
hold off

Accedi per commentare.

Più risposte (0)

Categorie

Scopri di più su Programming in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by