Incorrect phase from fourier transform

6 visualizzazioni (ultimi 30 giorni)
Hi,
  • I make a few sinusoids of different frequencies with different phase offsets.
  • Add them to make a waveform
  • Fast Fourier Transform.
  • Then get the phase from the complex number given by the FFT - but it doesn't always match the phase that it originally had...why?
  • Code below with a plot - Its annotated well and outputs the phases
clear all
freq_range = (3:5)
Fs =10*max(freq_range);
Ts = 1/Fs;
end_time = 5;
n = 0 : Ts : end_time-Ts;
%Make the number of waves in the frequency range
for a = 1:length(freq_range)
random_phase(a) = 2*pi*rand(1,1);
y(a,:) = cos(2*pi .* freq_range(a) .* n + random_phase(a)) ; %Polar form
end
%Sum all the waves together to make a waveform
waveform = sum(y);
%Setup Fast Fourier Transform
N=length(n);
freq_domain = (0:N/2); %Show positive frequency only
freq_domain = freq_domain * Fs / N;
%Fast Fourier Transform
ft = fft(waveform)/N;
ft_spectrum = 2*abs(ft); %2* to compensate for negative frequency
ft_spectrum = ft_spectrum(1:N/2+1); %Show positive Frequency Only
ft_phase = angle(ft(1:N/2+1));
%Get Phase
Bins_per_freq= (N/Fs);
freq_bins = Bins_per_freq * (freq_range) +1; %Domain starts at 0, so add 1
random_phase %The phase offset the cosine waves orignally had
phase = angle(ft(freq_bins)) %The Phase from the fft
%They do not match... but sometimes they do... why?
figure(1);
subplot(3,1,1);plot(n,waveform);title('Time Domain Signal');
subplot(3,1,2);plot(freq_domain,ft_spectrum);title('Frequency Domain');
subplot(3,1,3);plot(freq_domain,ft_phase);title('Phase on Frequency Domain');

Risposta accettata

David Goodmanson
David Goodmanson il 17 Apr 2018
Hi Nathan,
If you check you will see that the difference between random_phase and phase is always either 0 or 2pi. This is because random_phase is constructed so that 0 <= random_phase <= 2*pi, whereas the output of the angle function has -pi < angle <= pi. When random_phase is between 0 and pi things agree, and when random_phase is between pi and 2pi then there is a difference of 2pi between that and the angle function.
If you define random_phase such that -pi <= random_phase <= pi, you'll always get agreement.

Più risposte (1)

Nathan Kennedy
Nathan Kennedy il 18 Apr 2018
Modificato: Nathan Kennedy il 18 Apr 2018
Hi David, Thanks. Answers accepted. I've rewritten my third order intercept code a few times and this is part of it, reconstructing any input wave from a user so its ready to be amplified correctly. Hopefully get there soon!

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by