How to solve the coupled second order differential equations by using "ODE45"?
4 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
HYEOKJUNE LEE
il 23 Apr 2018
Commentato: HYEOKJUNE LEE
il 23 Apr 2018
Hello,
I try to solve the coupled second order differential equations with ODE45.
But my answer was weird.
My system is two defree of freedom system including spring and damper.
So, the equations are
m1*x1'' + (c1+c2)*x1' + (k1+k2)*x1 - c2*x2' - k2*x2 = 0;
m2*x2'' + x2*x2' + k2*x2 - c2*x1' - k2*x1 = F(t);
And I changed the above equations,
x1'' = v1' = ...
x2'' = v2' = ...
Here are my code..
% mx1'' = -(k1+k2)x1 - (c1+c2)x1' + k2 x2 + c2 x2'
% mx2'' = -k2 x2 - c2 x2' + k2 x1 + c2 x1' + F
tspan = linspace(0,10*pi,2000);
h = tspan(2) - tspan(1);
xini = [0; 0; 0; 0];
[t,x] = ode45(@T2_func, tspan, xini);
------ Function ------
function dxdt = T2_func(t,x)
%%Constants
m1 = 1; % [kg]
m2 = 1; % [kg]
k1 = 10; % [N/m]
k2 = 10; % [N/m]
c1 = 1; % [Ns/m]
c2 = 1; % [Ns/m]
%%Force
p = 10 * ones(1,length(t)); % [N]
%%Matrix
F = zeros(2, length(t));
F(2,:) = p/m2;
K11 = -(k1+k2)/m1;
K12 = k2/m1;
K21 = -k2/m2;
K22 = k2/m2;
Kmat = [K11 K12; K21 K22];
C11 = -(c1+c2)/m1;
C12 = c2/m1;
C21 = -c2/m2;
C22 = c2/m2;
Cmat = [C11 C12; C21 C22];
%%Function
dxdt = zeros(4,1);
dxdt(1) = x(2);
dxdt(2) = - Kmat(1,1)*x(1) - Cmat(1,1)*x(2) + Kmat(1,2)*x(3) + Cmat(1,2)*x(4) + F(1);
dxdt(3) = x(4);
dxdt(4) = - Kmat(2,1)*x(3) - Cmat(2,1)*x(4) + Kmat(2,2)*x(1) + Cmat(2,2)*x(2) + F(2);
Thank you.
0 Commenti
Risposta accettata
Torsten
il 23 Apr 2018
You already included the correct signs of the coefficients in the definition of Kmat and Cmat. Thus all terms in dxdt(2) and dxdt(4) must have a "+" sign.
Furthermore, in your original set of equations, K11 = -k1/m1 instead of K11 = -(k1+k2)/m1.
Additionally, t in T2_func will always be a scalar. Thus
%%Force
p = 10 ; % [N]
%%Matrix
F(1) = 0;
F(2) = p/m2;
Best wishes
Torsten.
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Ordinary Differential Equations in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!