Cannot interpret pca results
2 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Hello everyone. I have generated a code which transforms a stochastic process making it dependant on uncorrelated random variables. However, the result doesn't look like the input at all. Can someone tell me why my score coefficient doesn't look like my input argument S?
if true
V = unifrnd(1,2,1,10000);
A = betarnd(2,2,1,10000);
t=50;
for i=1:t
S(i,:)=V*i+0.5*A*i^2;
theoreticalmeanS(i)=3/2*i+1/4*i^2;
meanS(i)=mean(S(i));
end
[coeff, score, latent]=pca(S');
scoreT=score';
figure('Name', 'coeff, principal component eigenvectors')
hold on
for i=1:t
plot(coeff(:,i))
end
figure
hold on
plot(S)
figure
hold on
plot(scoreT)
end
Thanks for reading.
0 Commenti
Risposte (0)
Vedere anche
Categorie
Scopri di più su Dimensionality Reduction and Feature Extraction in Help Center e File Exchange
Prodotti
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!