# bvp4c or ode45?

4 views (last 30 days)
I G on 3 May 2018
Commented: I G on 3 May 2018
I am solving two the first order ODEs ('=d/dz, all other variables are known constants):
p0 p0'=-32 beta/R^4
p0p1'=-((2-sigma_v)/sigma_v)*8*p0'/R
I have next conditions
p0(z=0)=p0i (I can choose value)
p0(z=1)=1
p1(z=0)=0
p1(z=1)=0
It is necessary to find p0'(z=0) and p1'(z=0) with shooting method (literature says like that), according to already mentioned p0(z=1)=1 and p1(z=1)=0. *How to connect this two conditions* and shoot p0'(z=0) for already known p1'(z=0)?
*Are that conditions p0'(z=0) and p1'(z=0) necessary*, because these are the first order equations, is there only one initial condition enough?
Instead of missing conditions, I also need to solve numerically two ODEs, from the beginning of text, with Runge Kutta method. How to connect that solving with shooting? Is it possible to find missing condition with bvp4c, as shooting method, and after that solve equation with ode45?

Torsten on 3 May 2018

If you know $p_0|_{z=1}=1$ and $p_1|_{z=1}=0$ and you want to know $p_0'|_{z=0}$ and $p_1'|_{z=0}$, you don't need a shooting method.

Just use ODE45 as you already did and define tspan=[1 0]. This way, you integrate back in z-direction from z=1 to z=0. Once you have reached z=0,

$p_0'|_{z=0}=-\dfrac{32 \beta}{R^4}/p_0$


and

$p_1'|_{z=0}=(-\dfrac{2-\sigma_v}{\sigma_v}\dfrac{8}{R}p_0'-p_0'*p_1)/p_0$


Best wishes

Torsten.

I G on 3 May 2018
I cannot find mistake in my equations, this is the last question I promise, but ode45 doesn`t work:
function f=fun(z,p)
R=2; sig=1; beta=1;
f(1)=-32*beta/(R^4*p(1));
f(2)=(-(2-sig)*8*f(1)/(sig*R)-f(1)*p(2))/p(1);
[zv,pv]=ode45('fun',[1 0],[1; 0])
Is it possible to call term on left side of the first equation in the second equation? What can be wrong here?

### Categories

Find more on Programming in Help Center and File Exchange

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!