How can I solve this nonlinear system using fsolve

3 visualizzazioni (ultimi 30 giorni)
clear all
clc
syms t y2 y3 y4 yn1 yn11 yr11 yr111 ys ys1 ys11 y01 y011 y1 yr v
h=0.01
r=0.50091382026531899391478548897399
s=1.5931124176008341060884423751727
xn=0.01
fn(t)=3*sin(t)
y0=1.0
y01=0;
y011=-2;
y(v)=3*sin(v)
%x0=0
%y1=y1
%yr=yr
%[y2,y1,yr,y3,y4,yn1,yn11,yr11,yr111,ys,ys1,ys11]=solve
eq1=(-y2+( -(r - 2)/r*y0+ (2*r - 4)/(r - 1)*y1+ 2/(r*(r - 1))*yr -(h^3*(3*r^5 - 18*r^4 + 24*r^3 + 24*r^2 - 53*r + 10))/(420*s*(r - s)*(s^2 - 3*s + 2))*fn(s)+(h^3*(3*r + 21*s - 7*r*s - 21*r^2*s + 7*r^3*s + 7*r^2 + 9*r^3 - 4*r^4 - 5))/(420*r*(r - s)*(r - 1))*fn(r)+ (h^3*(r - 2)*(53*r + 91*s - 77*r*s - 21*r^2*s + 7*r^3*s + 21*r^2 + 5*r^3 - 3*r^4 - 86))/(420*(r - 1)*(s - 1))*fn(y1)+ (h^3*(r - 2)*(24*r + 21*s - 70*r*s + 42*r^2*s - 7*r^3*s - 12*r^3 + 3*r^4 - 5))/(840*r*s)*fn(y0)+ (h^3*(7*s - 4*r + 14*r*s - 7*r^3*s + 2*r^3 + 3*r^4 - 19))/(840*(s - 2))*fn(y2)))
eq2=(-y3-(r - 3)/r*y0+ (r - 4)/(r - 1)*y1+ 3/(r*(r - 1))*yr+ (h^3*(- 9*r^5 + 54*r^4 - 72*r^3 - 72*r^2 + 117*r + 44))/(840*s*(r - s)*(s^2 - 3*s + 2))*fn(s) -(h^3*(33*r + 84*s - 105*r*s - 105*r^2*s + 105*r^3*s - 21*r^4*s + 33*r^2 + 33*r^3 - 51*r^4 + 12*r^5 + 44))/(840*r*(r - s)*(r^2 - 3*r + 2))*fn(r)+ (h^3*(959*r*s - 812*s - 842*r - 105*r^2*s - 105*r^3*s + 21*r^4*s + 33*r^2 + 33*r^3 + 33*r^4 - 9*r^5 + 856))/(840*(r - 1)*(s - 1))*fn(y1)+ -(h^3*(117*r + 84*s - 469*r*s + 462*r^2*s - 168*r^3*s + 21*r^4*s - 72*r^2 - 72*r^3 + 54*r^4 - 9*r^5 + 44))/(1680*r*s)*fn(y0) -(h^3*(243*r + 252*s - 63*r*s - 42*r^2*s - 42*r^3*s + 21*r^4*s + 12*r^2 + 12*r^3 + 12*r^4 - 9*r^5 - 460))/(1680*(r - 2)*(s - 2))*fn(y2))
eq3=simplify(-y4 +2/r*y0 -2/(r - 1)*y1+ 2/(r*(r - 1))*yr -(h^3*(r^5 - 6*r^4 + 8*r^3 + 8*r^2 + 8*r - 41))/(140*s*(r - s)*(s^2 - 3*s + 2))*fn(s) -(h^3*(11*r - 35*s - 35*r*s - 35*r^2*s + 35*r^3*s - 7*r^4*s + 11*r^2 + 11*r^3 - 17*r^4 + 4*r^5 + 123))/(420*r*(r - s)*(r^2 - 3*r + 2))*fn(r)+ (h^3*(525*r*s - 539*s - 549*r - 35*r^2*s - 35*r^3*s + 7*r^4*s + 11*r^2 + 11*r^3 + 11*r^4 - 3*r^5 + 662))/(420*(r - 1)*(s - 1))*fn(y1)+ (h^3*(24*r + 35*s + 126*r*s - 154*r^2*s + 56*r^3*s - 7*r^4*s + 24*r^2 + 24*r^3 - 18*r^4 + 3*r^5 - 123))/(840*r*s)*fn(y0)-(h^3*(564*r + 567*s - 294*r*s - 14*r^2*s - 14*r^3*s + 7*r^4*s + 4*r^2 + 4*r^3 + 4*r^4 - 3*r^5 - 1011))/(840*(r - 2)*(s - 2))*fn(y2))
eq4=simplify(-yn1 -(r - 1)/r*y0 +(r - 2)/(r - 1)*y1+1/(r*(r - 1))*yr -(h^3*(3*r^5 - 18*r^4 + 24*r^3 + 24*r^2 - 53*r + 20))/(840*s*(r - s)*(s^2 - 3*s + 2))*fn(s)+(h^3*(42*s - 9*r + 7*r*s - 28*r^2*s + 7*r^3*s + 2*r^2 + 13*r^3 - 4*r^4 - 20))/(840*r*(r - s)*(r - 2))*fn(r)+(h^3*(30*r + 56*s - 63*r*s - 28*r^2*s + 7*r^3*s + 19*r^2 + 8*r^3 - 3*r^4 - 36))/(840*(s - 1))*fn(y1)+ (h^3*(r - 1)*(33*r + 42*s - 105*r*s + 49*r^2*s - 7*r^3*s + 9*r^2 - 15*r^3 + 3*r^4 - 20))/(1680*r*s)*fn(y0) -(h^3*(r - 1)*(9*r + 14*s - 21*r*s - 7*r^2*s + 7*r^3*s + 5*r^2 + r^3 - 3*r^4 - 8))/(1680*(r - 2)*(s - 2))*fn(y2))
eq5=simplify(-yn11+ 2/r*y0 -2/(r - 1)*y1+ 2/(r*(r - 1))*y(r)-(h^3*(3*r^5 - 18*r^4 + 24*r^3 + 24*r^2 - 81*r + 38))/(420*s*(r - s)*(s^2 - 3*s + 2))*fn(s) -(h^3*(11*r + 70*s - 35*r*s - 35*r^2*s + 35*r^3*s - 7*r^4*s + 11*r^2 + 11*r^3 - 17*r^4 + 4*r^5 - 38))/(420*r*(r - s)*(r^2 - 3*r + 2))*fn(r)+ (h^3*(245*r*s - 154*s - 164*r - 35*r^2*s - 35*r^3*s + 7*r^4*s + 11*r^2 + 11*r^3 + 11*r^4 - 3*r^5 + 116))/(420*(r - 1)*(s - 1))*fn(y1)+ (h^3*(196*r*s - 70*s - 81*r - 154*r^2*s + 56*r^3*s - 7*r^4*s + 24*r^2 + 24*r^3 - 18*r^4 + 3*r^5 + 38))/(840*r*s)*fn(y0) -(h^3*(56*r*s - 28*s - 31*r - 14*r^2*s - 14*r^3*s + 7*r^4*s + 4*r^2 + 4*r^3 + 4*r^4 - 3*r^5 + 18))/(840*(r - 2)*(s - 2))*fn(y2))
eq6=simplify(-yr11 +(r - 1)/r*y0 -r/(r - 1)*y1+ (2*r - 1)/(r*(r - 1))*yr -(h^3*r*(- 8*r^5 + 45*r^4 - 74*r^3 + 24*r^2 + 24*r - 11))/(840*s*(r - s)*(s^2 - 3*s + 2))*fn(s)+ (h^3*(22*r - 35*s - 70*r*s + 105*r^2*s - 28*r^3*s + 33*r^2 - 68*r^3 + 20*r^4 + 11))/(840*(r - s)*(r - 2))*fn(r) -(h^3*r*(r + 21*s - 14*r*s - 49*r^2*s + 14*r^3*s + 12*r^2 + 23*r^3 - 8*r^4 - 10))/(840*(s - 1))*fn(y1) -(h^3*(r - 1)*(13*r + 35*s - 119*r*s + 77*r^2*s - 14*r^3*s + 37*r^2 - 37*r^3 + 8*r^4 - 11))/(1680*s)*fn(y0) +(h^3*r*(r - 1)*(r + 7*s - 7*r*s - 21*r^2*s + 14*r^3*s + 5*r^2 + 9*r^3 - 8*r^4 - 3))/(1680*(r - 2)*(s - 2))*fn(y2))
eq7=simplify(-yr111+ 2/r*y0 -2/(r - 1)*y1+2/(r*(r - 1))*yr -(h^3*(- 18*r^5 + 87*r^4 - 116*r^3 + 24*r^2 + 24*r - 11))/(420*s*(r - s)*(s^2 - 3*s + 2))*fn(s) -(h^3*(11*r - 35*s - 35*r*s + 385*r^2*s - 385*r^3*s + 98*r^4*s + 11*r^2 - 269*r^3 + 298*r^4 - 80*r^5 + 11))/(420*r*(r - s)*(r^2 - 3*r + 2))*fn(r)+ (h^3*(11*r + 21*s - 35*r*s - 35*r^2*s + 105*r^3*s - 28*r^4*s + 11*r^2 + 11*r^3 - 59*r^4 + 18*r^5 - 10))/(420*(r - 1)*(s - 1))*fn(y1)+ (h^3*(24*r + 35*s - 154*r*s + 266*r^2*s - 154*r^3*s + 28*r^4*s + 24*r^2 - 116*r^3 + 87*r^4 - 18*r^5 - 11))/(840*r*s)*fn(y0) -(h^3*(4*r + 7*s - 14*r*s - 14*r^2*s + 56*r^3*s - 28*r^4*s + 4*r^2 + 4*r^3 - 31*r^4 + 18*r^5 - 3))/(840*(r - 2)*(s - 2))*fn(y2))
eq8=simplify(-ys-((r - s)*(s - 1))/r*y0 +(s*(r - s))/(r - 1)*y1+ (s*(s - 1))/(r*(r - 1))*yr -(h^3*(3*r^4 + 3*r^3*s - 18*r^3 + 3*r^2*s^2 - 18*r^2*s + 24*r^2 + 3*r*s^3 - 18*r*s^2 + 24*r*s + 24*r - 4*s^4 + 17*s^3 - 11*s^2 - 11*s - 11))/(840*(s - 2))*fn(s)+ (h^3*s*(s - 1)*(- 4*r^4 + 3*r^3*s + 17*r^3 + 3*r^2*s^2 - 18*r^2*s - 11*r^2 + 3*r*s^3 - 18*r*s^2 + 24*r*s - 11*r + 3*s^4 - 18*s^3 + 24*s^2 + 24*s - 11))/(840*r*(r^2 - 3*r + 2))*fn(r) -(h^3*s*(3*r^5 - 7*r^4*s - 11*r^4 + 35*r^3*s - 11*r^3 + 35*r^2*s - 11*r^2 + 7*r*s^4 - 35*r*s^3 - 35*r*s^2 + 10*r - 3*s^5 + 11*s^4 + 11*s^3 + 11*s^2 - 10*s))/(840*(r - 1))-(h^3*(s - 1)*(- 3*r^5 + 7*r^4*s + 18*r^4 - 56*r^3*s - 24*r^3 + 154*r^2*s - 24*r^2 - 7*r*s^4 + 56*r*s^3 - 154*r*s^2 + 11*r + 3*s^5 - 18*s^4 + 24*s^3 + 24*s^2 - 11*s))/(1680*r)*fn(y0)+ (h^3*s*(s - 1)*(3*r^5 - 7*r^4*s - 4*r^4 + 14*r^3*s - 4*r^3 + 14*r^2*s - 4*r^2 + 7*r*s^4 - 14*r*s^3 - 14*r*s^2 + 3*r - 3*s^5 + 4*s^4 + 4*s^3 + 4*s^2 - 3*s))/(1680*(r - 2)*(s - 2))*fn(y2))
eq9=simplify(-ys1 -(r - 2*s + 1)/r*y0+ (r - 2*s)/(r - 1)*y1+ (2*s - 1)/(r*(r - 1))*yr -(h^3*(6*r^5*s - 3*r^5 - 36*r^4*s + 18*r^4 + 48*r^3*s - 24*r^3 + 48*r^2*s - 24*r^2 - 42*r*s^5 + 210*r*s^4 - 280*r*s^3 + 48*r*s + 11*r + 28*s^6 - 126*s^5 + 140*s^4 - 22*s))/(840*s*(r - s)*(s^2 - 3*s + 2))*fn(s)+(h^3*(- 8*r^5*s + 4*r^5 + 14*r^4*s^2 + 27*r^4*s - 17*r^4 - 70*r^3*s^2 + 13*r^3*s + 11*r^3 + 70*r^2*s^2 - 57*r^2*s + 11*r^2 + 70*r*s^2 - 57*r*s + 11*r - 14*s^6 + 84*s^5 - 140*s^4 + 70*s^2 - 22*s))/(840*r*(r - s)*(r^2 - 3*r + 2))*fn(r)+ (h^3*(- 6*r^5*s + 3*r^5 + 14*r^4*s^2 + 15*r^4*s - 11*r^4 - 70*r^3*s^2 + 57*r^3*s - 11*r^3 - 70*r^2*s^2 + 57*r^2*s - 11*r^2 - 28*r*s^5 + 140*r*s^4 - 70*r*s^2 + r*s + 10*r + 14*s^6 - 56*s^5 + 42*s^2 - 20*s))/(840*(r - 1)*(s - 1))*fn(y1) -(h^3*(- 6*r^5*s + 3*r^5 + 14*r^4*s^2 + 29*r^4*s - 18*r^4 - 112*r^3*s^2 + 8*r^3*s + 24*r^3 + 308*r^2*s^2 - 202*r^2*s + 24*r^2 - 28*r*s^5 + 210*r*s^4 - 560*r*s^3 + 308*r*s^2 - 13*r*s - 11*r + 14*s^6 - 84*s^5 + 140*s^4 - 70*s^2 + 22*s))/(1680*r*s)*fn(y0) -(h^3*(- 6*r^5*s + 3*r^5 + 14*r^4*s^2 + r^4*s - 4*r^4 - 28*r^3*s^2 + 22*r^3*s - 4*r^3 - 28*r^2*s^2 + 22*r^2*s - 4*r^2 - 28*r*s^5 + 70*r*s^4 - 28*r*s^2 + r*s + 3*r + 14*s^6 - 28*s^5 + 14*s^2 - 6*s))/(1680*(r - 2)*(s - 2))*fn(y2))
eq10=simplify(-ys11+2/r*y0 -2/(r - 1)*y1+ 2/(r*(r - 1))*yr-(h^3*(3*r^5 - 18*r^4 + 24*r^3 + 24*r^2 - 105*r*s^4 + 420*r*s^3 - 420*r*s^2 + 24*r + 84*s^5 - 315*s^4 + 280*s^3 - 11))/(420*s*(r - s)*(s^2 - 3*s + 2))*fn(s) -(h^3*(4*r^5 - 7*r^4*s - 17*r^4 + 35*r^3*s + 11*r^3 - 35*r^2*s + 11*r^2 - 35*r*s + 11*r + 21*s^5 - 105*s^4 + 140*s^3 - 35*s + 11))/(420*r*(r - s)*(r^2 - 3*r + 2))*fn(r)+ (h^3*(- 3*r^5 + 7*r^4*s + 11*r^4 - 35*r^3*s + 11*r^3 - 35*r^2*s + 11*r^2 - 35*r*s^4 + 140*r*s^3 - 35*r*s + 11*r + 21*s^5 - 70*s^4 + 21*s - 10))/(420*(r - 1)*(s - 1))*fn(y1)+ (h^3*(3*r^5 - 7*r^4*s - 18*r^4 + 56*r^3*s + 24*r^3 - 154*r^2*s + 24*r^2 + 35*r*s^4 - 210*r*s^3 + 420*r*s^2 - 154*r*s + 24*r - 21*s^5 + 105*s^4 - 140*s^3 + 35*s - 11))/(840*r*s)*fn(y0) -(h^3*(- 3*r^5 + 7*r^4*s + 4*r^4 - 14*r^3*s + 4*r^3 - 14*r^2*s + 4*r^2 - 35*r*s^4 + 70*r*s^3 - 14*r*s + 4*r + 21*s^5 - 35*s^4 + 7*s - 3))/(840*(r - 2)*(s - 2))*fn(y2))
eq11=simplify(-y01-(r + 1)/r*y0+ r/(r - 1)*y1 -1/(r*(r - 1))*yr+ (h^3*r*(3*r^4 - 18*r^3 + 24*r^2 + 24*r - 11))/(840*s*(r - s)*(s^2 - 3*s + 2))*fn(s)+ (h^3*(11*r - 35*s - 35*r*s + 35*r^2*s - 7*r^3*s + 11*r^2 - 17*r^3 + 4*r^4 + 11))/(840*(r - s)*(r^2 - 3*r + 2))*fn(r) -(h^3*r*(11*r + 21*s - 35*r*s - 35*r^2*s + 7*r^3*s + 11*r^2 + 11*r^3 - 3*r^4 - 10))/(840*(r - 1)*(s - 1))*fn(y1) -(h^3*(24*r + 35*s - 154*r*s + 56*r^2*s - 7*r^3*s + 24*r^2 - 18*r^3 + 3*r^4 - 11))/(1680*s)*fn(y0)+(h^3*r*(4*r + 7*s - 14*r*s - 14*r^2*s + 7*r^3*s + 4*r^2 + 4*r^3 - 3*r^4 - 3))/(1680*(r - 2)*(s - 2))*fn(y2))
eq12=simplify(-y011+ 2/r*y0 -2/(r - 1)*y1+ 2/(r*(r - 1))*yr -(h^3*(3*r^5 - 18*r^4 + 24*r^3 + 24*r^2 + 24*r - 11))/(420*s*(r - s)*(s^2 - 3*s + 2))*fn(s) -(h^3*(11*r - 35*s - 35*r*s - 35*r^2*s + 35*r^3*s - 7*r^4*s + 11*r^2 + 11*r^3 - 17*r^4 + 4*r^5 + 11))/(420*r*(r - s)*(r^2 - 3*r + 2))*fn(r)+ (h^3*(11*r + 21*s - 35*r*s - 35*r^2*s - 35*r^3*s + 7*r^4*s + 11*r^2 + 11*r^3 + 11*r^4 - 3*r^5 - 10))/(420*(r - 1)*(s - 1))*fn(y1)+ (h^3*(24*r + 35*s - 154*r*s - 154*r^2*s + 56*r^3*s - 7*r^4*s + 24*r^2 + 24*r^3 - 18*r^4 + 3*r^5 - 11))/(840*r*s)*fn(y0) -(h^3*(4*r + 7*s - 14*r*s - 14*r^2*s - 14*r^3*s + 7*r^4*s + 4*r^2 + 4*r^3 + 4*r^4 - 3*r^5 - 3))/(840*(r - 2)*(s - 2))*fn(y2))
[y2,y1,y3,y4,yr,yn1,yn11,yr11,yr111,ys,ys1,ys11]=solve([eq1,eq2,eq3,eq4,eq5,eq6,eq7,eq8,eq9,eq10,eq11,eq12])
  8 Commenti
sadeem alqarni
sadeem alqarni il 15 Mag 2018
Modificato: Walter Roberson il 15 Mag 2018
syms y22 y33 y5 y6 y7 y8 y9 t y(t) y1 v
h=2*pi/(300)
r=1-sqrt(3/7)
s=1+sqrt(3/7)
xn=0
y0=1.0
fn(t)=-y(t)+0.001*exp(sqrt(-1)*t)
%y0=1.0
y11=(9995*sqrt(i))/(10000)
y(v)=-y(v)+0.001*exp(sqrt(-1)*v)
eq1=-y22-y0+2*y1+h^2/(10*s*(r - s)*(s^2 - 3*s + 2))*fn(s)-h^2/(10*r*(r - s)*(r^2 - 3*r + 2))*fn(r)-(h^2*(25*r + 25*s - 25*r*s - 28))/(30*(r - 1)*(s - 1))*fn(y1)+ (h^2*(5*r*s - 3))/(60*r*s)*fn(y0) -(h^2*(10*r + 10*s - 5*r*s - 17))/(60*(r - 2)*(s - 2))*fn(y22)
eq2=-h*y33 -y0+y1-(h^2*(8*r - 19))/(60*s*(r - s)*(s^2 - 3*s + 2))*fn(s)+ (h^2*(8*s - 19))/(60*r*(r - s)*(r^2 - 3*r + 2))*fn(r) -(h^2*(73*r + 73*s - 65*r*s - 92))/(60*(r - 1)*(s - 1))*fn(y1)+ (h^2*(8*r + 8*s + 5*r*s - 19))/(120*r*s)*fn(y0) -(h^2*(82*r + 82*s - 45*r*s - 145))/(120*(r - 2)*(s - 2))*fn(y22)
eq3=-h*y5-y0+y1+(h^2*(7*r - 4))/(60*s*(r - s)*(s^2 - 3*s + 2))*fn(s) -(h^2*(7*s - 4))/(60*r*(r - s)*(r^2 - 3*r + 2))*fn(r) -(h^2*(18*r + 18*s - 25*r*s - 14))/(60*(r - 1)*(s - 1))*fn(y1) -(h^2*(7*r + 7*s - 15*r*s - 4))/(120*r*s)*fn(y0)+ (h^2*(3*r + 3*s - 5*r*s - 2))/(120*(r - 2)*(s - 2))*fn(y22)
eq4=-y6+(1 - r)*y0+r*y1+(h^2*r*(r^5 - 6*r^4 + 10*r^3 - 8*r + 3))/(60*s*(r - s)*(s^2 - 3*s + 2))*fn(s)+(h^2*(3*r - 8*s - 8*r*s + 12*r^2*s - 3*r^3*s + 3*r^2 - 7*r^3 + 2*r^4 + 3))/(60*(r - s)*(r - 2))*fn(r) -(h^2*r*(3*r + 7*s - 8*r*s - 8*r^2*s + 2*r^3*s + 3*r^2 + 3*r^3 - r^4 - 4))/(60*(s - 1))*fn(y1) -(h^2*(r - 1)*(5*r + 8*s - 27*r*s + 13*r^2*s - 2*r^3*s + 5*r^2 - 5*r^3 + r^4 - 3))/(120*s)*fn(y0)+(h^2*r*(r - 1)*(r + 2*s - 3*r*s - 3*r^2*s + 2*r^3*s + r^2 + r^3 - r^4 - 1))/(120*(r - 2)*(s - 2))*fn(y22)
eq5=-h*y7-y0+y1+(h^2*(3*r^5 - 15*r^4 + 20*r^3 - 8*r + 3))/(60*s*(r - s)*(s^2 - 3*s + 2))*fn(s)+(h^2*(8*s - 60*r^2*s + 60*r^3*s - 15*r^4*s + 40*r^3 - 45*r^4 + 12*r^5 - 3))/(60*r*(r - s)*(r^2 - 3*r + 2))*fn(r)+ (h^2*(7*r + 7*s - 15*r*s + 20*r^3*s - 5*r^4*s - 10*r^4 + 3*r^5 - 4))/(60*(r - 1)*(s - 1))*fn(y1)+ (h^2*(8*r + 8*s - 35*r*s + 60*r^2*s - 30*r^3*s + 5*r^4*s - 20*r^3 + 15*r^4 - 3*r^5 - 3))/(120*r*s)*fn(y0)-(h^2*(2*r + 2*s - 5*r*s + 10*r^3*s - 5*r^4*s - 5*r^4 + 3*r^5 - 1))/(120*(r - 2)*(s - 2))*fn(y22)
eq6=-y8+(1 - s)*y0+ s*y1 -(h^2*(3*s - 8*r - 8*r*s + 12*r*s^2 - 3*r*s^3 + 3*s^2 - 7*s^3 + 2*s^4 + 3))/(60*(r - s)*(s - 2))*fn(s) -(h^2*s*(s^5 - 6*s^4 + 10*s^3 - 8*s + 3))/(60*r*(r - s)*(r^2 - 3*r + 2))*fn(r) -(h^2*s*(7*r + 3*s - 8*r*s - 8*r*s^2 + 2*r*s^3 + 3*s^2 + 3*s^3 - s^4 - 4))/(60*(r - 1))*fn(y1) -(h^2*(s - 1)*(8*r + 5*s - 27*r*s + 13*r*s^2 - 2*r*s^3 + 5*s^2 - 5*s^3 + s^4 - 3))/(120*r)*fn(y0)+(h^2*s*(s - 1)*(2*r + s - 3*r*s - 3*r*s^2 + 2*r*s^3 + s^2 + s^3 - s^4 - 1))/(120*(r - 2)*(s - 2))*fn(y22)
eq7=-h*y9-y0+y1-(h^2*(8*r - 60*r*s^2 + 60*r*s^3 - 15*r*s^4 + 40*s^3 - 45*s^4 + 12*s^5 - 3))/(60*s*(r - s)*(s^2 - 3*s + 2))*fn(s)-(h^2*(3*s^5 - 15*s^4 + 20*s^3 - 8*s + 3))/(60*r*(r - s)*(r^2 - 3*r + 2))*fn(r)+ (h^2*(7*r + 7*s - 15*r*s + 20*r*s^3 - 5*r*s^4 - 10*s^4 + 3*s^5 - 4))/(60*(r - 1)*(s - 1))*fn(y1)+ (h^2*(8*r + 8*s - 35*r*s + 60*r*s^2 - 30*r*s^3 + 5*r*s^4 - 20*s^3 + 15*s^4 - 3*s^5 - 3))/(120*r*s)*fn(y0) -(h^2*(2*r + 2*s - 5*r*s + 10*r*s^3 - 5*r*s^4 - 5*s^4 + 3*s^5 - 1))/(120*(r - 2)*(s - 2))*fn(y22)
eq8=-h*y11-y0+y1-(h^2*(8*r - 3))/(60*s*(r - s)*(s^2 - 3*s + 2))*fn(s)+ (h^2*(8*s - 3))/(60*r*(r - s)*(r^2 - 3*r + 2))*fn(r)+(h^2*(7*r + 7*s - 15*r*s - 4))/(60*(r - 1)*(s - 1))*fn(y1)+ (h^2*(8*r + 8*s - 35*r*s - 3))/(120*r*s)*fn(y0) -(h^2*(2*r + 2*s - 5*r*s - 1))/(120*(r - 2)*(s - 2))*fn(y22)
[y1,y9,y8,y7,y6,y5,y33,y22]= vpasolve([eq1,eq2,eq3,eq4,eq5,eq6,eq7,eq8])
Walter Roberson
Walter Roberson il 15 Mag 2018
Because of the unknown function y(t), and since there are no differential terms to make it a differential equation, the closest you can get is to reduce it to the equation
I * RootOf(56000*Pi^2*3^(1/2)*7^(1/2)*y(1-(1/7)*3^(1/2)*7^(1/2))-56000*Pi^2*3^(1/2)*7^(1/2)*y((1/7)*3^(1/2)*7^(1/2)+1)+56*Pi^2*3^(1/2)*7^(1/2)*exp(I+((1/7)*I)*7^(1/2)*3^(1/2))-56*Pi^2*3^(1/2)*7^(1/2)*exp(I-((1/7)*I)*7^(1/2)*3^(1/2))+245000*Pi^2*y(1-(1/7)*3^(1/2)*7^(1/2))+245000*Pi^2*y((1/7)*3^(1/2)*7^(1/2)+1)+3000*Pi^2*y(-I*Z)-(107946000*I)*Pi*2^(1/2)+80000*Pi^2*y(y1)+147000*Pi^2*y(1)-245*Pi^2*exp(I+((1/7)*I)*7^(1/2)*3^(1/2))-147*Pi^2*exp(I)-107946000*Pi*2^(1/2)-80*Pi^2*exp(I*y1)-245*Pi^2*exp(I-((1/7)*I)*7^(1/2)*3^(1/2))-3*exp(Z)*Pi^2+32400000000*y1-32400000000)+(1/2025000000)*(7*3^(1/2)*7^(1/2)*Pi^2+49*Pi^2)*exp(I-((1/7)*I)*7^(1/2)*3^(1/2))+(1/2025000000)*(-7*3^(1/2)*7^(1/2)*Pi^2+49*Pi^2)*exp(I+((1/7)*I)*7^(1/2)*3^(1/2))+(1/2025000000)*(-7000*3^(1/2)*7^(1/2)*Pi^2-49000*Pi^2)*y(1-(1/7)*3^(1/2)*7^(1/2))+(1/2025000000)*(7000*3^(1/2)*7^(1/2)*Pi^2-49000*Pi^2)*y((1/7)*3^(1/2)*7^(1/2)+1)+(1/31640625)*Pi^2*exp(I*y1)+(1999/300000+(1999/300000)*I)*Pi*2^(1/2)-(1/112500)*Pi^2*y(1)-(8/253125)*Pi^2*y(y1)+(1/112500000)*Pi^2*exp(I)+1
Here, I = sqrt(-1), Pi = pi, and RootOf(expression in Z) means the set of values, Z, such that the expression becomes zero -- the roots of the expression. There is a y(y1) inside of that RootOf(), so you have no hope of proceeding any further symbolically. You cannot proceed numerically because of the undefined function y.
Perhaps you accidentally omitted a definition for the function y ?

Accedi per commentare.

Risposte (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by