represent differencital equation with ode45
4 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
jose luis guillan suarez
il 20 Mag 2018
Modificato: KARTHIK
il 15 Nov 2023
i got this differential equation:
function xdot=tresorden(t,x)
xdot=zeros(3,1);
Vp=5;
Vi=Vp*square(2*pi*t)+5;
xdot(1)=x(2);
xdot(2)=x(3);
xdot(3)=6*Vi-6*x(1)-11*x(2)-6*x(3);
xdot=[xdot(1);xdot(2);xdot(3)];
how can i represent x(1)?
2 Commenti
Anderson Francisco Silva
il 29 Ago 2020
And if he wanted to use the last vector, to be entered in another function he could do it like this? :
xdot(3)=6*Vi-6*x(1)-11*x(2)-6*x(3);
x_dot=[xdot(1);xdot(2);xdot(3)]; (I chance the name of vector, for no replaces xdot)
Risposta accettata
jose luis guillan suarez
il 29 Mag 2018
Modificato: jose luis guillan suarez
il 29 Mag 2018
6 Commenti
Più risposte (3)
Jan
il 20 Mag 2018
Modificato: Jan
il 29 Mag 2018
This integrates the function from the start point x=[1,2,3] over the time 0 to 7:
[EDITED - bug concerning t.' fixed]
function main
[t, x] = ode45(@tresorden, [0, 7], [1,2,3]);
plot(t, x(:, 1));
xdot = tresorden(t.', x.').';
end
function xdot = tresorden(t, x)
Vp = 5;
Vi = Vp * (2*pi*t)^2 + 5; % Or what is square() ?
xdot = [x(2, :); ...
x(3, :); ...
6 * Vi - 6 * x(1, :) - 11 * x(2, :) - 6 * x(3, :)];
end
Note: Due to square you are integrating a non-smooth system. This causes numerical instabilities. See http://www.mathworks.com/matlabcentral/answers/59582#answer_72047.
0 Commenti
jose luis guillan suarez
il 21 Mag 2018
1 Commento
Jan
il 21 Mag 2018
Sure? I'd expect:
xdot(1) = x(2);
xdot(2) = x(3);
xdot(3) = Vi - 6*x(3) - 11*x(2) - 6*x(1);
if you convert the 3rd order equation to a system of 1st order.
But even then: ODE45 is used to solve initial value problems numerically. If you want the values of x(1), you need to run the integration from an initial value.
Please do not post parts of the question in the section for answer. And explain, what "represent differencital equation with ode45" means exactly.
jose luis guillan suarez
il 22 Mag 2018
Modificato: jose luis guillan suarez
il 22 Mag 2018
11 Commenti
Jan
il 27 Mag 2018
@jose: You have posted and removed another equation formerly. The solution of how to get the 3rd derivative has been given repeatedly and it even occurs in the original question.
Currently my best assumption is that your "numerical checking" contains a mistake.
i checked numerically and the [...] it's not the 3rd derivative.
My best assumption is that your "numerical check" contains a mistake.
After 6 days it could not be clarified, what the actual question is or why the obvious and already posted solution does not satisfy you. Therefore I will leave this thread now.
Vedere anche
Categorie
Scopri di più su General Applications in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!








