How I can check the system solution with a Matlab ODE function.

8 visualizzazioni (ultimi 30 giorni)
dydt(1) = 1.3*(y(3) - y(1)) + 10400*exp(20.7 - 1500/y(1))*y(2);
dydt(2) = 1880 * (y(4) - y(2) * (1+exp(20.7 - 1500/y(1))));
dydt(3) = 1752 - 269*y(3) + 267*y(1);
dydt(4) = 0.1 + 320*y(2) - 321*y(4)
y(t0)= [50,0,600,1]

Risposta accettata

Jan
Jan il 11 Giu 2018
function main
t0 = 0;
y0= [50,0,600,1]
[t,y] = ode45(@fcn, [t0, 7], y0);
plot(t, y);
end
function dydt = fcn(t, y)
dydt = zeros(4,1);
dydt(1) = 1.3*(y(3) - y(1)) + 10400*exp(20.7 - 1500/y(1))*y(2);
dydt(2) = 1880 * (y(4) - y(2) * (1+exp(20.7 - 1500/y(1))));
dydt(3) = 1752 - 269*y(3) + 267*y(1);
dydt(4) = 0.1 + 320*y(2) - 321*y(4);
end
  3 Commenti
Jan
Jan il 11 Giu 2018
I guessed the endpoint 7. This takes a long time, in fact. If you use 2, ODE45 can solve this in seconds. ODE45 is designed to integrate non-stiff ODEs. If your system is stiff, use e.g. ode23s.
tic
[t,y] = ode23s(@fcn, [t0, 7], y0);
toc
% Elapsed time is 0.045184 seconds.
Camilo Sánchez
Camilo Sánchez il 11 Giu 2018
Thank for your answer. I already assumed it was something like that and I used ODE15S. Thanks for your support.

Accedi per commentare.

Più risposte (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by