two coupled first oredr ODE plot

2 visualizzazioni (ultimi 30 giorni)
fartash2020
fartash2020 il 20 Giu 2018
Commentato: Torsten il 20 Giu 2018
Hi MATLAB users, I have been trying to solve a coupled first order ODE. I want to plot z(t) vs t. the time span from timespan=[0 30]. I would highly appreciate if anyone can guide me. so far I have:
% Constant parameters
DeltaE = 0 ;
omega = 0.1 ;
kesi = 8e-5 ;
Omega = 1e-2 ;
q = 1e-5 ;
% Initial Values
z0 = 0.15 ;
phi0 = (9/5)*pi ;
% undriven
epsilon = 0 ;
%%%driven
%%%epsilon =1e-3 ;
% equations
d(phi)/dt = (omega.*z) + (z./sqrt(1-z.^2)).*q.*cos(phi) + epsilon.*cos(t);
dz/dt = -sqrt(1-z.^2).*1.*sin(phi)+ kesi.*(d(phi)/dt);
Best, Fatemeh

Risposta accettata

Torsten
Torsten il 20 Giu 2018
% Constant parameters
DeltaE = 0 ;
omega = 0.1 ;
kesi = 8e-5 ;
Omega = 1e-2 ;
q = 1e-5 ;
% Initial Values
z0 = 0.15 ;
phi0 = (9/5)*pi ;
% undriven
epsilon = 0 ;
%%%driven
%%%epsilon =1e-3 ;
fun=@(t,y)[omega*y(2) + y(2)/sqrt(1-y(2)^2)*q*cos(y(1)) + epsilon*cos(t);-sqrt(1-y(2)^2)*sin(y(1))+ kesi*(omega*y(2) + y(2)/sqrt(1-y(2)^2)*q*cos(y(1)) + epsilon*cos(t))];
tspan = [0 30]
y0 = [phi0;z0];
[t,y] = ode45(fun,tspan,y0);
plot(t,y(:,2))
Best wishes
Torsten.
  4 Commenti
fartash2020
fartash2020 il 20 Giu 2018
if we change it like this
fun=@(t,y)[(omega/Omega)*y(2) + y(2)/sqrt(1-y(2)^2)*(q/Omega)*cos(y(1)) + (epsilon/Omega)*cos(t*Omega);-sqrt(1-y(2)^2)*sin(y(1))+ kesi*((omega/Omega)*y(2) + y(2)/sqrt(1-y(2)^2)*(q/Omega)*cos(y(1)) + (epsilon/Omega)*cos(t.*Omega))];
it would seem ok, right?
Torsten
Torsten il 20 Giu 2018
I can't tell since I don't know the differential equations you are trying to solve. All I can tell is that this system is different from the one you defined previously.

Accedi per commentare.

Più risposte (0)

Categorie

Scopri di più su Numerical Integration and Differential Equations in Help Center e File Exchange

Prodotti


Release

R2018a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by