create random diagonalisable matrix
8 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Gary Soh
il 18 Set 2018
Commentato: David Goodmanson
il 19 Set 2018
hi.. I would like to create a random diagonalisable integer matrix. Is there any code for that? thereafter I would want to create matrix X such that each the columns represent the eigenvectors.
0 Commenti
Risposta accettata
David Goodmanson
il 19 Set 2018
Hi Gary,
another way:
n = 7 % A is nxn
m = 9 % random integers from 1 to m
X = randi(m,n,n)
D = round(det(X))
lam = 1:n % some vector of unique integer eigenvalues, all nonzero
lamD = lam*D % final eigenvalues
A = round(X*diag(lamD)/X)
A*X - X*diag(lamD) % check
If n is too large and m is too small, this doesn't work sometimes because X comes up as a singular matrix.
3 Commenti
Bruno Luong
il 19 Set 2018
Modificato: Bruno Luong
il 19 Set 2018
Actually there is no problem of lam to have null element(s). One can also select it randomly in the above code if the spectral probability is matter.
p = 5; % eg
lam = randi(p,1,n)
Più risposte (2)
Bruno Luong
il 18 Set 2018
Modificato: Bruno Luong
il 19 Set 2018
Code for both A and X are integer.
I edit the 1st version of the code (if you happens to see t) essentially a bug correction and better generation and simplification. Second edit: fix issue with non-simple eigen-value.
% Building A random (n x n) integer matrix
% and X (n x n) integer eigen-matrix of A
% meaning A*X = diag(lambda)*X
n = 4;
m = 5;
p = 5;
d = randi(2*m+1,[1,n])-m-1;
C = diag(d);
while true
P = randi(2*p+1,[n,n])-p-1;
detP = round(det(P));
if detP ~= 0
break
end
end
Q = round(detP * inv(P));
A = P*C*Q;
g = 0;
for i=1:n*n
g = gcd(g,abs(A(i)));
end
A = A/g;
lambda = sort(d)*(detP/g);
I = eye(n);
X = zeros(n);
s = 0;
for k=1:n
Ak = A-lambda(k)*I;
r = rank(Ak);
[~,~,E] = qr(Ak);
[p,~] = find(E);
j1 = p(r+1:end);
j2 = p(1:r);
[~,~,E] = qr(Ak(:,j2)');
[p,~] = find(E);
i1 = p(r+1:end);
i2 = p(1:r);
Asub = Ak(i2,j2);
s = mod(s,length(j1))+1;
x = Ak(:,j2) \ Ak(:,j1(s));
y = zeros(n-r,1);
y(s) = -1;
x = round([x; y]*det(Asub));
g = 0;
for i=1:n
g = gcd(g,abs(x(i)));
end
X([j2;j1],k) = x/g;
end
D = diag(lambda);
A
X
% % Verification A*X = X*D
A*X
X*D
0 Commenti
Vedere anche
Categorie
Scopri di più su Linear Algebra in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!