Adding a constraint in @confun constrained optimization
18 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Mondher Souilah
il 31 Ott 2018
Modificato: Bruno Luong
il 2 Nov 2018
Hello, I am struggling to add a second constraint in my optimization problem... My obj function is:
function f = objfun(X)
for i=1..18;
f=sum(exp-(10*X(i)); end
My 1st constraint is a non linear inequality :
function [c,ceq]=confun(X)
ceq = [];
c(1) =(-0.35*X(3)+0.35*X(9)+1.3333*X(10))^2-(0.3333*X(13)+0.3182*X(3)-0.6364*X(6)+0.3182*X(9)-X(17))^2-(0.015/2)^2;
My second constraint is also a non linear inequality which I can't code, here is what I want to verify:
% I need that all the values from 0 to the X(i) to be generated (the optimum X(i)), the condition 1 is verified.
Would you note that ub and lb and all the other entries for fmincon are known and my problem is only in the @confun
[x,fval]= fmincon(@objfun,x0,A,b,Aeq,beq,lb,ub,@confun,options)
A = [];
b = [];
Aeq = [];
beq = [];
x0 = [0.0016,0.0016,0.0016,0.0016,0.0016,0.0016,0.0016,0.0016,0.0016,0.0016,0.0016,0.0016,0.0016,0.0016,0.0016,0.0016,0.0016,0.0016];
lb = [0.0015,0.0015,0.0015,0.0015,0.0015,0.0015,0.0015,0.0015,0.0015,0.0015,0.0015,0.0015,0.0015,0.0015,0.0015,0.0015,0.0015,0.0015];
ub = [0.015,0.015,0.015,0.015,0.015,0.015,0.015,0.015,0.015,0.015,0.015,0.015,0.015,0.015,0.015,0.015,0.015,0.015];
options = optimoptions(@fmincon,'Algorithm','sqp');
2 Commenti
Alan Weiss
il 1 Nov 2018
Sorry, I don't understand what you mean by your second constraint. The only description you gave is "I need that all the values from 0 to the X(i) to be generated (the optimum X(i)), the condition 1 is verified." I have no idea what that means.
Alan Weiss
MATLAB mathematical toolbox documentation
Risposta accettata
Bruno Luong
il 2 Nov 2018
Modificato: Bruno Luong
il 2 Nov 2018
Mathmematically you could define another constraint function
h(x) := sup { g(y): y in [0,x] }
then optimize your objective function:
argmin obj(x), with the constraint
h(x) <= somevalue
Now the problem becomes "how to compute h(x)?"
But that's is now on your side, and you might able to do it with specific formula of g(x).
You can of course use fmincon or such to compute h(x). But that might be costly. In this case the confun becomes (quick and dirty):
function [c,ceq]=confun(X)
lb = zeros(size(X));
ub = X;
afun = @(X) -0.35*X(3)+0.35*X(9)+1.3333*X(10);
bfun = @(X) 0.3333*X(13)+0.3182*X(3)-0.6364*X(6)+0.3182*X(9)-X(17);
g = @(X) (afun(X).^2-bfun(X).^2);
X = fmincon(@(X) -g(X), X, [], [], [], [], lb, ub); % Maximize g(X)
c = g(X)-(0.015/2)^2;
end
In some problems, it is sometime easier to find a formula for another function that is slightly greater than h(x):
H(x) >= h(x) for all x.
Note: "sup" is loosely speaking "max" for people who are not familiar with the notation.
0 Commenti
Più risposte (1)
Vedere anche
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
