eigenvalues and eigenvector manual calculation

6 visualizzazioni (ultimi 30 giorni)
I have a matrix 2x2, for example A= [ 0.064911 3.276493; 3.276493 311.2073]. I would like to calculate the eigenvalues and eigenvectors. I have calculated the eigenvalues by manual and match it with matlab is match. the manual of eigenvalues :
eigenvalues were calculated by |A- λ * I|=0
so I received the eigenvalues (0.0304;311.2418). Now I am trying to calculated the eigenvectors that I found the way like this
B= eig(A) ; this is calculating the eigenvalues
(v,d)=eig(A)
I got v= (-0.9999 0.0105; 0.0105 0.9999) and d = ( 0.0304 0 ; 0 311.2418).
I would like to ask how to calculate manual of matrix v? Hope someone can help. Thank you.
  1 Commento
Manoj Samal
Manoj Samal il 3 Dic 2020
By using (v,d)=eig(A) gives v= normalised eigen vector(not eigen vector) and d=eigen values
N11=1/sqrt(1^2+3^2+1^2)=1/sqrt11
N21=3/ sqrt(3^2+2^2+1^2)=1/sqrt14 and so on....

Accedi per commentare.

Risposta accettata

Torsten
Torsten il 19 Nov 2018
Modificato: Torsten il 19 Nov 2018
By solving
(A-lambda1*I)*v1 = 0
and
(A-lambda2*I)*v2 = 0
You could use
v1 = null(A-lambda1*I)
and
v2 = null(A-lambda2*I)
to achieve this.
Best wishes
Torsten.
  7 Commenti
muhammad iqbal habibie
muhammad iqbal habibie il 19 Nov 2018
I try manual it is hard though
A- λ * I
so
[0.064911 3.276493; 3.276493 311.2073] - [0.0304 0; 0 311.2418]
= [0.034511 3.276493; 3.276493 -0.0345]
how must I suppose to be v = (-0.9999 0.0105; 0.0105 0.9999)
any suggestion for manual calculation?
Torsten
Torsten il 19 Nov 2018
([0.064911 3.276493; 3.276493 311.2073] - [0.0304 0; 0 0.0304])*[v11; v21]=[0;0]
Solve for v1=[v11;v21] and normalize the vector to get the first column of v.
([0.064911 3.276493; 3.276493 311.2073] - [311.2418 0; 0 311.2418])*[v12;v22]=[0;0]
Solve for v2=[v12;v22] and normalize the vector to get the second column of v.

Accedi per commentare.

Più risposte (1)

Bruno Luong
Bruno Luong il 19 Nov 2018
No cheating, this applies for 2x2 only
A= [ 0.064911 3.276493;
3.276493 311.2073];
lambda=eig(A); % you should do it by solving det(A-lambda I)=0
V = ones(2);
for k=1:2
B = A-lambda(k)*eye(size(A));
% select pivot column
[~,j] = max(sum(B.^2,1));
othercolumn = 3-j;
V(j,k) = -B(:,j)\B(:,othercolumn);
end
% Optional: Make eigenvectors l2 norm = 1
V = V ./ sqrt(sum(V.^2,1));
disp(V)
  2 Commenti
muhammad iqbal habibie
muhammad iqbal habibie il 20 Nov 2018
Is it possible from
A= [ 0.064911 3.276493;
3.276493 311.2073];
to v = (-0.9999 0.0105; 0.0105 0.9999) with eigenvalues (0.0304;311.2418) using excel?
Torsten
Torsten il 21 Nov 2018
http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=9&ved=2ahUKEwjF8uef_-TeAhUJ3qQKHZB3BSsQFjAIegQIBxAC&url=http%3A%2F%2Fwww-2.rotman.utoronto.ca%2F~hull%2Fsoftware%2FEigenvalue%26vector.xls&usg=AOvVaw2og1xfxU96ox_lDmx3k6GB

Accedi per commentare.

Categorie

Scopri di più su Linear Algebra in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by