how can i get an improved Euler's method code for this function?

8 visualizzazioni (ultimi 30 giorni)
dy = @(x,y).2*x*y;
f = @(x).2*exp(x^2/2);
x0=1;
xn=1.5;
y=1;
h=0.1;
fprintf ('x \t \t y (euler)\t y(analytical) \n') % data table header
fprintf ('%f \t %f\t %f\n' ,x0,y,f(x0));
for x = x0 : h: xn-h
y = y + dy(x,y)*h;
x = x + h ;
fprintf (
'%f \t %f\t %f\n' ,x,y,f(x));
end
  2 Commenti
FastCar
FastCar il 16 Dic 2018
Euler has its limit to solve differential equations. You can change the integration step going towards the optimum step that is given by the minimum of the sum of the truncation error and step error, but you cannot improve further. What do you mean by improve?
Ibrahem abdelghany ghorab
Ibrahem abdelghany ghorab il 17 Dic 2018
modified method
and i what 4Runge-kutta for this function dy = @(x,y).2*x*y;

Accedi per commentare.

Risposta accettata

Are Mjaavatten
Are Mjaavatten il 17 Dic 2018
There are two problems with your code:
  • The analytical solution is incorrect
  • You increment x inside the for loop. Don't. The for loop does this automatically.
Here is a corrected version:
a = 0.2;
y0 = 1;
x0 = 1;
xn = 1.5;
h = 0.1;
dy = @(x,y)a*x*y; % dy/dx
f = @(x) y0*exp(a/2*(x.^2-1)); % Correct analytic solution
y = y0;
fprintf ('x \t \t y (euler)\t y(analytical) \n') % data table header
fprintf ('%f \t %f\t %f\n' ,x0,y,f(x0));
for x = x0+h : h: xn
y = y + dy(x,y)*h;
fprintf ('%f \t %f\t %f\n' ,x,y,f(x));
end
Choose a smaller step length h to for better accuracy. Alternatively try a higher order method like Runge-Kutta.
  1 Commento
Ibrahem abdelghany ghorab
Ibrahem abdelghany ghorab il 17 Dic 2018
Modificato: Ibrahem abdelghany ghorab il 17 Dic 2018
modified orImprovedEuler method
and i what 4Runge-kutta for this function dy = @(x,y).2*x*y;

Accedi per commentare.

Più risposte (1)

James Tursa
James Tursa il 17 Dic 2018
Modificato: James Tursa il 17 Dic 2018
The "Modified" Euler's Method is usually referring to the 2nd order scheme where you average the current and next step derivative in order to predict the next point. E.g.,
dy1 = dy(x,y); % derivative at this time point
dy2 = dy(x+h,y+h*dy1); % derivative at next time point from the normal Euler prediction
y = y + h * (dy1 + dy2) / 2; % average the two derivatives for the Modified Euler step
See this link:
  4 Commenti

Accedi per commentare.

Categorie

Scopri di più su Mathematics in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by