Why it is 94? corss-validation for regression tree problem.
1 visualizzazione (ultimi 30 giorni)
Mostra commenti meno recenti
Hi,
Example shown on the page below.
load carsmall
X = [Acceleration Displacement Horsepower Weight]; % X is 100 by 4.
Mdl = fitrtree(X,MPG); % grow a regression tree using the entire data set.
CVMdl = crossval(Mdl); % cross-validate the regression tree using 10-fold cross-validation
As I looked into CVMdl (the RegressionPartitionedModel cross-validated model), it shows the observation number used in each fold is 94. Why is it 94 not 90? See screenshot below.
![Untitled.png](https://www.mathworks.com/matlabcentral/answers/uploaded_files/144637/Untitled.png)
Since X is 100 by 4, showing there are 100 observations to start. To have 10 folds, it means they should divide X into 90 training data and 10 test data. So I couldn't figure out why it is 94 training data instead of 90.
Please help.
0 Commenti
Risposte (0)
Vedere anche
Categorie
Scopri di più su Gaussian Process Regression in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!