Class with static variables in parallel global optimization algorithm

5 visualizzazioni (ultimi 30 giorni)
Hello,
I have a global optimization program dealing with large matrices (several gigabytes of data), so in order to save memory, a class with static variables was implemented similar to the implementation in Static Data, and then one object of this class is created, initialized and passed as an argument to a function handle acting as the objective function of global multistage optimization algorithm (Particle Swarm + Pattern Search). When parallelization in optimoptions is true:
optimoptions( ...
'UseParallel', true);
The optimization always yields false results, but when parallelization is turned off, it works correctly.
Thanks in advance!

Risposte (2)

Matt J
Matt J il 8 Feb 2019
Modificato: Matt J il 8 Feb 2019
All variables are cloned when parallelization is used. Each parallel worker operates with an independent copy of any variable sent to it.
  5 Commenti
Matt J
Matt J il 8 Feb 2019
Okay, but we also need to see how it is used in the optimization.
Omar Kamel
Omar Kamel il 14 Feb 2019
Modificato: Omar Kamel il 14 Feb 2019
Sorry for the late reply.
%create object and initialize
dampingModelDataObject = cDampingConstData; %create object of type cDampingConstData
dampingModelDataObject.setget_delta_A_to_delta_d(delta_A_to_delta_d); %initialize object with fields
dampingModelDataObject.setget_A_0_0(A_0_0); %initialize object with fields
dampingModelDataObject.setget_states_num(A_0_0); %initialize object with fields
%objective function handler, object is passed to it with another constant inputs and d as variable
fun = @(d) DampIT.SumModalDamping_sparse_oo(reshape(d,1,1,num_damping_coefficients), dampingModelDataObject,targetModalDamping);
%optimization options
options = optimoptions('particleswarm', 'Display', 'iter', ...
'HybridFcn', {@patternsearch, patternsearch_hybrid_options}, ... %hybrid optimization
'MaxTime', obj.settings.pp_swarm_maxTime, ...
'MaxIterations', obj.settings.pp_swarm_maxIter, ...
'FunctionTolerance', obj.settings.pp_swarm_tolFun, ...
'PlotFcn', { @pswplotbestf}, ...
'SwarmSize', obj.settings.pp_swarm_swarmSize, ...
'OutputFcn', memLog_swarm, ...
'UseParallel', useparallel_flag, ... %true
'UseVectorized', false, ...
'MaxStallIterations', obj.settings.pp_swarm_maxStallIter, ...
'InitialSwarmMatrix', InitialSwarmMatrix);
%problem settings
problem.solver = 'particleswarm';
problem.objective = fun;
problem.nvars = num_damping_coefficients;
problem.lb = x_start;
problem.ub = x_end;
problem.options = options;
%start optimization
[d_optimized, fval, exitflag, output] = particleswarm(problem);

Accedi per commentare.


Walter Roberson
Walter Roberson il 14 Feb 2019
Look again at the link you provided . Notice the point about static data not being saved with an object . The process of sending variables to parallel workers involves save and load.
  3 Commenti
Walter Roberson
Walter Roberson il 21 Mar 2019
However, that saves the matrix once per worker, not "only 1 time in the memory". If you strictly need "only 1 time in the memory" then you should look in the File Exchange for https://www.mathworks.com/matlabcentral/fileexchange/28572-sharedmatrix which uses operating system shared memory.

Accedi per commentare.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by