Shooting Method On Harmonic Equation

2 visualizzazioni (ultimi 30 giorni)
Alexander Kimbley
Alexander Kimbley il 19 Feb 2019
Modificato: Torsten il 28 Feb 2019
I'm really new to Matlab, so this may be ridicously easy what I'm about to ask, but bare with me please.
I'm trying to integrate the Harmonic equation y'' +(a^2)*y=0 with a=2.4, with BC y(0)=y'(pi)=0. I'm doing this to try and "shoot" for the actual value of y at y=pi which we obviously can find analytically but I need to get my head around the code so I can apply this to a more complicated problem.
Thanks.

Risposta accettata

Torsten
Torsten il 20 Feb 2019
function main
ydot0_start = 1.0;
a = 2.4;
iflag = 0;
sol = fzero(@(x)fun_shooting(x,a,iflag),ydot0_start);
iflag = 1;
y_at_pi = fun_shooting(sol,a,iflag)
end
function res = fun_shooting(x,a,iflag)
fun_ode = @(t,y)[y(2);-a^2*y(1)];
tspan = [0,pi];
y0 = [0;x];
[t,y] = ode45(fun_ode,tspan,y0);
if iflag == 0
res = y(end,2);
else
res = y(end,1);
end
end
  8 Commenti
Alexander Kimbley
Alexander Kimbley il 27 Feb 2019
So how would I go about changing the conditions to y(0)=0, y'(0)=1, where we alter 'a' to get y(pi)=0 to 10^-8 accuaracy say, assuming we dont actually know the true value of a.
Thanks.
Torsten
Torsten il 28 Feb 2019
Modificato: Torsten il 28 Feb 2019
function main
a0 = 4.5;
a = fzero(@fun_shooting,a0)
end
function res = fun_shooting(x)
fun_ode = @(t,y)[y(2);-x^2*y(1)];
tspan = [0,pi];
y0 = [0;1];
[t,y] = ode45(fun_ode,tspan,y0);
res = y(end,1);
end

Accedi per commentare.

Più risposte (0)

Categorie

Scopri di più su Programming in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by