SVM、特徴ベクトル
15 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
バイナリ分類のサポートベクターマシンの学習データ(特徴ベクトル)についてお尋ねします。
ドキュメンテーションでは2次元(平面)でのfitcsvmやpredictの使い方が解説されています。
これを3次元や4次元の特徴ベクトルに拡張するためには、fitcsvmのベクトルXを3列(4列)にすればよいのでしょうか?
また,この場合の分離空間の表示の例がありましたら御教示ください。
0 Commenti
Risposta accettata
Kenta
il 22 Feb 2019
したのコードにあるように、3列にすればできます。
分離平面の例としては、下のようなものがありました。一度試してみてください。
load fisheriris
X = meas(:,1:3);
y = ones(size(X,1),1);
SVMModel = fitcsvm(X,y,'KernelScale','auto','Standardize',true,...
'OutlierFraction',0.05);
0 Commenti
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Statistics and Machine Learning Toolbox in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!