How can I plot diagrams for a particle model?
1 visualizzazione (ultimi 30 giorni)
Mostra commenti meno recenti
I am working on a particle model that models a swarm (which involves systems of differential equations) and would like to produce diagrams of this form:

(source: Yao-li Chuang, Maria R. D’Orsogna, Daniel Marthaler, Andrea L. Bertozzi, and Lincoln S. Chayes, State Transitions and the Continuum Limit for a 2D Interacting, Self-Propelled Particle System)
Is it possible to create diagrams like this?
Right now I have
V = sym('V', [N d]); % velocity (N particles, dimension = 2), V(i,j) is the jth velocity component of the ith particle
X = sym('X',[N d]); % the position defined same way as above
I am aiming to approximate the solution numerically and plot the graphs above.
1 Commento
KSSV
il 23 Ott 2020
If you the locations (x,y) and the respective vector components (u,v) you can very much plot the shown figures using quiver.
Risposte (1)
Karan Singh
il 6 Gen 2025
I tried quiver as mentioned by KSSV
N = 20;
theta = linspace(0, 2*pi, N);
r = linspace(0, 1, N);
[R, T] = meshgrid(r, theta);
X1 = R .* cos(T)
X2 = R .* sin(T);
V1_radial = X1;
V2_radial = X2;
V1_rotational = -X2;
V2_rotational = X1;
figure;
subplot(1, 2, 1);
quiver(X1, X2, V1_radial, V2_radial, 'b');
axis equal;
xlabel('X');
ylabel('Y');
title('Radial Velocity Field');
grid on;
subplot(1, 2, 2);
quiver(X1, X2, V1_rotational, V2_rotational, 'b');
axis equal;
xlabel('X');
ylabel('Y');
title('Rotational Velocity Field');
grid on;
0 Commenti
Vedere anche
Categorie
Scopri di più su Data Import and Analysis in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!