Following is the error while calculating cosine distance
1 visualizzazione (ultimi 30 giorni)
Mostra commenti meno recenti
Balaji M. Sontakke
il 9 Apr 2019
Commentato: Balaji M. Sontakke
il 11 Apr 2019
Following is the error while calculating cosine distance....
Conversion to cell from double is not possible.
Error in CosineDistance (line 26)
Distance(ctr) = - (ClientMean(i,:)'*EvalSet(j,:))/(norm_x*norm_y);
Error in Evaluation (line 83)
Distance = CosineDistance(ClientMean, EvalSet);
Error in DorsalHandVeinVerification (line 69)
[EvalFAR, EvalFRR, EvalEER, Thr] = Evaluation(TrainSet, gndTrain, EvalSet, gndEval,
options);
function Distance = CosineDistance(ClientMean, EvalSet) % function definition
% Calculate Cosine Distance
%
% Inputs:
% ClientSet ---- c* dim matrix
% EvalSet ---- n*dim matrix
% Outputs:
% Distance ---- c*n matrix
if ~exist('ClientMean','var')
error('Input arguments error.');
end
if ~exist('EvalSet','var')
error('Input arguments error.');
end
[c, d] = size(ClientMean);
[n, dim] = size(EvalSet);
if (d ~= dim)
error('Dimensionality disagreement.');
end
Distance=cell(c,n); % pre-allocate
ctr=1;
for i = 1 : c
for j = 1 : n
norm_x = norm(ClientMean);
norm_y = norm(EvalSet);
Distance(ctr) = - (ClientMean(i,:)'*EvalSet(j,:))/(norm_x*norm_y);
ctr=ctr+1;
end
end
end
0 Commenti
Risposta accettata
KSSV
il 9 Apr 2019
Modificato: KSSV
il 9 Apr 2019
cell is accessed using flower braces i.e {}. Replace Distance(ctr) with Distance{ctr}.
function Distance = CosineDistance(ClientMean, EvalSet) % function definition
% Calculate Cosine Distance
%
% Inputs:
% ClientSet ---- c* dim matrix
% EvalSet ---- n*dim matrix
% Outputs:
% Distance ---- c*n matrix
if ~exist('ClientMean','var')
error('Input arguments error.');
end
if ~exist('EvalSet','var')
error('Input arguments error.');
end
[c, d] = size(ClientMean);
[n, dim] = size(EvalSet);
if (d ~= dim)
error('Dimensionality disagreement.');
end
Distance=cell(c,n); % pre-allocate
ctr=1;
for i = 1 : c
for j = 1 : n
norm_x = norm(ClientMean);
norm_y = norm(EvalSet);
Distance{ctr} = - (ClientMean(i,:)'*EvalSet(j,:))/(norm_x*norm_y);
ctr=ctr+1;
end
end
end
2 Commenti
Più risposte (0)
Vedere anche
Categorie
Scopri di più su NaNs in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!