fitting a parabola giving unreasonable answer

2 visualizzazioni (ultimi 30 giorni)
Hello,
I'm trying to fit a parabola to 4 data points using the following equation:
y = a.*exp(((-4.*pi.*b.*6.022e23)./(8.314.*1623)).*(((c./2.*(c-x).^2) - (1/3.*(c-x).^3))));
I'm getting an unreasonable result, which looks like this:
fit_to_sun1.svg
I think the equation is correct because I copy and pasted it from a function that employs it to create this graph, which models the same points:
lattice_strain_model_divalent.svg
  5 Commenti
Michael Phillips
Michael Phillips il 11 Apr 2019
The 4 data points:
r = [0.89;1.12;1.26;1.42].*1e-10;
D = [0.027322404;1.798850575;1.33;0.11];
r is x and D is y.
John D'Errico
John D'Errico il 12 Apr 2019
Modificato: John D'Errico il 12 Apr 2019
But your model is not a parabola. It is a nasty to compute exponential thing. (Nasty in double precision arithmetic.)
Seems confusing. I'd suggest your problem is the huge dynamic range of the parameters. That gets the solver in trouble.
b = [2;-1.15e21;1.2e-10];

Accedi per commentare.

Risposta accettata

Clay Swackhamer
Clay Swackhamer il 12 Apr 2019
Two things: I changed your independent values (r) to something that is not so small. Second, I made your equation more simple. I tried it with your original values but it didn't work for me. Hopefully this gets you off to a good start.
%Data
r = [0.89;1.12;1.26;1.42];
D = [0.027322404;1.798850575;1.33;0.11];
%Set up the fit
ft = fittype('a*r^2+b*r+c', 'independent', 'r');
opts = fitoptions('Method', 'NonlinearLeastSquares');
opts.Display = 'Off';
opts.StartPoint = [0.2, 0.2, 0.3];
%Conduct the fit
[fitresult, gof] = fit(r, D, ft, opts);
%Evaluate the function for plotting
a = fitresult.a;
b = fitresult.b;
c = fitresult.c;
r_model = linspace(min(r), max(r), 100); %create 100 points to evaluate the model on
D_model = a*r_model.^2+b*r_model+c;
%Make plots
plot(r, D, 'bo', 'markerSize', 6) %plot the data
hold on
plot(r_model, D_model, 'LineWidth', 2, 'Color', 'r') %plot the model
leg = legend('Data', 'Model');
leg.FontSize = 14;
model and data.png
  3 Commenti
Clay Swackhamer
Clay Swackhamer il 12 Apr 2019
No problem. If this was helpful would you mind accepting the answer? Thanks

Accedi per commentare.

Più risposte (0)

Categorie

Scopri di più su Get Started with Curve Fitting Toolbox in Help Center e File Exchange

Prodotti


Release

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by