Pca built-in function and how its works?

8 visualizzazioni (ultimi 30 giorni)
Can anyone tell me the pca built-in function for machine learning also which one dataset are used for dimensionality reduction... Thnx in advance

Risposta accettata

KSSV
KSSV il 24 Mag 2019
REad abut Singula Value DEcomposition. svd . And refer this for more clarity:
  3 Commenti
KSSV
KSSV il 24 Mag 2019
Matrices...a 2D matrix. Check the documentation..you got many examples: https://in.mathworks.com/help/stats/pca.html
Muhammad Ibrar
Muhammad Ibrar il 24 Mag 2019
Ok thnx let me check if I got a problem I'll contct u...

Accedi per commentare.

Più risposte (1)

Steven Lord
Steven Lord il 24 Mag 2019
The books and papers listed in the References section on the documentation page for the pca function in Statistics and Machine Learning Toolbox may be of interest if you want to know the technical details behind principal component analysis. The page linked as the second entry in the Topics section of that page gives a brief overview of what PCA is.
  3 Commenti
Steven Lord
Steven Lord il 24 Mag 2019
The main point behind PCA is that you use it to analyze your data to identify your data's principal components and learn more about your data.
If you want a sample dataset to experiment with pca you could use rand, randn, randi, gallery, ones, zeros, eye, etc. Some of those would make for more interesting experiments than others.
Muhammad Ibrar
Muhammad Ibrar il 24 Mag 2019
Can u send some example of 1 dataset plz actually im new to implement this

Accedi per commentare.

Categorie

Scopri di più su Dimensionality Reduction and Feature Extraction in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by