For J and L (J<L) I want to find that values of p and q which satisfies mod(((i^b-i^a)*(i^d-i^c)),j)~=0 for all values of 0<=a<b<=J-1 and 0<=c<d<=L-1. If mod(((i^b-i^a)*(i^d-i^c)),j)==0 at any stage we break the loop and go for next values of p and q
    4 visualizzazioni (ultimi 30 giorni)
  
       Mostra commenti meno recenti
    
    Jasvinder Singh
 il 5 Giu 2019
  
    
    
    
    
    Commentato: Jasvinder Singh
 il 5 Giu 2019
            J=input('Value of J: ');
L=input('Value of L: ');
for j = L:6;
    for i = 2:j-1;
        for a=0:J-1;
            for b=a+1:J-1;
                for c = 0:L-1;
                    for d = c+1:L-1;
                        if mod(((i^b-i^a)*(i^d-i^c)),j)~=0
                           p_q=[i,j]
                        end
                    end
                end
            end
        end
    end
end
output:
p_q =     2     3
p_q =     2     3
p_q =     2     4
p_q =     2     4
p_q =     2     4
p_q =     2     5
p_q =     2     5
p_q =     2     5
p_q =     3     5
p_q =     3     5
p_q =     3     5
p_q =     4     5
p_q =     4     5
p_q =     2     6
and so on.
Here the required answer is p=2 and q=5; it is the only combination for which mod(((i^b-i^a)*(i^d-i^c)),j)~=0 for any values of a,b,c,d. But here it is showing so many answers. Kindly help me.
2 Commenti
Risposta accettata
  Matt J
      
      
 il 5 Giu 2019
        
      Modificato: Matt J
      
      
 il 5 Giu 2019
  
      [a,b,c,d]=ndgrid(0:J-1,0:J-1,  0:L-1, 0:L-1);
  k=a<b & c<d;
[a,b,c,d]=deal( a(k),  b(k), c(k), d(k)); %all allowed combinations
p_q=cell(6,6);
for j = L:6
    for i = 2:j-1
        if   all( mod( (i.^b-i.^a).*(i.^d-i.^c) ,j)  )
          p_q{i,j} =[i,j];
        end
    end
end
p_q=vertcat(p_q{:})
3 Commenti
  Matt J
      
      
 il 5 Giu 2019
				But d cannot  equal 3 when L=3. In your original post, you say that 0<=d<=L-1, so the maximum value d can assume is 2.
Più risposte (0)
Vedere anche
Categorie
				Scopri di più su Deep Learning Toolbox in Help Center e File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!