PCA expansion random variables

3 visualizzazioni (ultimi 30 giorni)
Jaime  de la Mota
Jaime de la Mota il 12 Giu 2019
Modificato: Adam il 12 Giu 2019
Hello everyone.
Right now I am applying PCA to a set of observations. [coeffUV, score_vectorUV, latentUV, tsquaredUV, explainedUV, muUV]=pca(Z, 'Centered',false); being Z a gaussian correlation kernel.
As far as I understand, Score columns are the eigenfunctions. I have read in some books that if one multiplies the eigenfunctions (columns of score) by the origninal matrix data, gaussian random variables are obtained. Hower, if I write randvar=Z*score(:,1); and hist(randvar) I don't get a Gaussian histogram.
Can someone tell me what I am doing wrong?
Thanks.
  1 Commento
Adam
Adam il 12 Giu 2019
Modificato: Adam il 12 Giu 2019
The columns of the coeff output are the eigenvectors, as explained in
doc pca

Accedi per commentare.

Risposte (0)

Categorie

Scopri di più su Dimensionality Reduction and Feature Extraction in Help Center e File Exchange

Prodotti

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by