# How do we decide the number of hiddenlayers in a PatternNet?

4 visualizzazioni (ultimi 30 giorni)
abhisrisai il 6 Ago 2019
Commentato: abhisrisai il 8 Ago 2019
Hi,
Well, since I'm working on PatternNets (Classification), my doubt is, how do we decide then number of hiddenlayers the network requires.
Before that, I have 8 predictors and 1 output response containing 4 classes.
I know that in order to define a hidden layer, we use :
MyNet = patternnet(10);
But how do I decide I need 10 and not 8 or any other number?
Any suggestion would be helpful. Thank you.
##### 0 CommentiMostra -2 commenti meno recentiNascondi -2 commenti meno recenti

Accedi per commentare.

### Risposta accettata

Greg Heath il 7 Ago 2019
Modificato: Greg Heath il 7 Ago 2019
1. patternnet(10) indicates ONE HIDDEN LAYER WITH TEN NODES
2. It is important to be mindful of the number of layers and nodes.
3. The set of input nodes IS NOT CONSIDERED A LAYER ( Probably because no mathematical operations are performed there)
4. Three sets of nodes (INPUT/HIDDEN/OUTPUT) is sufficient. Let
size(inputmatrix) = [ I N ]
size(targetmatrix) = [ O N ]
Then with a single middle "HIDDEN" layer of size H,
The size of the typical two layer net is
size(net) = I - H - O
a. I input nodes
b. H hidden layer nodes
c. O output layer nodes
4. The total number of weights is
Nw = ( I + 1 ) * H + ( H + 1 ) * O
= O + ( I + O + 1 ) * H
where the "1s" represent constant bias connections
5. The data is typically divided into a training subset of size Ntrn ~ 0.7*N, a validation subset of size Nval ~ 0.15*N and a test subset of size Ntst ~ 0.15*N.
6. For good approximate solutions, the number of training equations Ntrneq = Ntrn*O should be sufficiently larger than the number of unknown weights Nw
7. The inequality Nw << Ntrneq results in
H << ( 0.7 * N * O - O )/(I+O+1)
8. A factor of 10 is usually sufficient
Hope this helps.
Greg
##### 1 CommentoMostra -1 commenti meno recentiNascondi -1 commenti meno recenti
abhisrisai il 8 Ago 2019
Hello Greg,
Thank you very much for the answer, it was helpful. Just another doubt, what happens to the prediction performance when we have abundant H nodes. In my case, I have 8 predictors and I feel 10 H nodes are sufficient. What if I up the number to 40 H nodes? Does it affect my prediction and how?
Thank you.

Accedi per commentare.

### Categorie

Scopri di più su Classification in Help Center e File Exchange

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by