What is the best way to set up a nested for loop?

1 visualizzazione (ultimi 30 giorni)
Steve
Steve il 22 Set 2019
Commentato: Steve il 24 Set 2019
Hi,
I need help creating an efficient, nested for-loop. I have to run through a couple of equations on a few of variables but need to know the best way to increment these variables and to store their new values.
Thanks,
Steve
  5 Commenti
darova
darova il 22 Set 2019
Your code looks ok. What do you need help?
Steve
Steve il 22 Set 2019
i need to create another loop to find and store the 3 angles that each Triplet makes with their corresponding F_point. Then, I would like to store all of this in one file.

Accedi per commentare.

Risposte (2)

Sulaymon Eshkabilov
Sulaymon Eshkabilov il 22 Set 2019
Hi Steven,
You loop is not doing much. SInce you are saving the last value from your nested loops. If this is what you want then, just remove the loops as follows:
load('Triplets');
load('F_points');
i=953; j=953;
xC = Triplets{i}(2,1);
xB = Triplets{i}(2,2);
xA = Triplets{i}(2,3);
yC = Triplets{i}(1,1);
yB = Triplets{i}(1,2);
yA = Triplets{i}(1,3);
yb = F_points{j}(2,1);
xb = F_points{j}(1,1);
xyb = [yb,xb];
xye = [Triplets{j}(1,3), Triplets{j}(2,3); Triplets{j}(1,2) Triplets{j}(2,2); Triplets{j}(1,1) Triplets{j}(2,1)];
CosTheta1 = dot(xye(1,:)-xyb(1,:),xye(2,:)-xyb(1,:))/(norm(xye(1,:)-xyb(1,:))*norm(xye(2,:)-xyb(1,:)));
ThetaInDegrees1 = acosd(CosTheta1);
CosTheta2 = dot(xye(2,:)-xyb(1,:),xye(3,:)-xyb(1,:))/(norm(xye(2,:)-xyb(1,:))*norm(xye(3,:)-xyb(1,:)));
ThetaInDegrees2 = acosd(CosTheta2);
CosTheta3 = dot(xye(3,:)-xyb(1,:),xye(1,:)-xyb(1,:))/(norm(xye(3,:)-xyb(1,:))*norm(xye(1,:)-xyb(1,:)));
ThetaInDegrees3 = acosd(CosTheta3);
degsum=ThetaInDegrees1+ThetaInDegrees2+ThetaInDegrees3;
If you do wnat to save all values of variables (xC, xB, ... xye, ... degsum) from your computations, then you'd need to specify the indexes and then you'd need to do the memory allocation:
xA = zeros(1,953); % Memory allocation
xB = zeros(1,953);
xC = zeros(1,953);
yA = zeros(1,953);
yB = zeros(1,953);
yC = zeros(1,953);
...
for i = 1 : length (Triplets)
for j = 1 : i
xC(i) = Triplets{i}(2,1);
xB(i) = Triplets{i}(2,2);
xA(i) = Triplets{i}(2,3);
yC(i) = Triplets{i}(1,1);
yB(i) = Triplets{i}(1,2);
yA(i) = Triplets{i}(1,3);
yb(j) = F_points{j}(2,1);
xb(j) = F_points{j}(1,1);
...
end
end
  2 Commenti
Steve
Steve il 22 Set 2019
Thanks for the info. What about the angle finding portion of the code? See below:
CosTheta1 = dot(xye(1,:)-xyb(1,:),xye(2,:)-xyb(1,:))/(norm(xye(1,:)-xyb(1,:))*norm(xye(2,:)-xyb(1,:)));
ThetaInDegrees1 = acosd(CosTheta1);
CosTheta2 = dot(xye(2,:)-xyb(1,:),xye(3,:)-xyb(1,:))/(norm(xye(2,:)-xyb(1,:))*norm(xye(3,:)-xyb(1,:)));
ThetaInDegrees2 = acosd(CosTheta2);
CosTheta3 = dot(xye(3,:)-xyb(1,:),xye(1,:)-xyb(1,:))/(norm(xye(3,:)-xyb(1,:))*norm(xye(1,:)-xyb(1,:)));
ThetaInDegrees3 = acosd(CosTheta3);
degsum=ThetaInDegrees1+ThetaInDegrees2+ThetaInDegrees3;

Accedi per commentare.


Sulaymon Eshkabilov
Sulaymon Eshkabilov il 23 Set 2019
Hi Steven,
Here is the complete solution of your problem:
clearvars
%% Part 0. Loading data
load('Triplets');
load('F_points');
N = length(Triplets);
%% Part 1. Saving all values of arrays from the calculations
% Memory allocation
xA = zeros(1,N);
xB = zeros(1,N);
xC = zeros(1,N);
yA = zeros(1,N);
yB = zeros(1,N);
yC = zeros(1,N);
xb = zeros(1,N);
yb = zeros(1,N);
for ii = 1 : N
for jj = 1 : N
xC(ii) = Triplets{ii}(2,1);
xB(ii) = Triplets{ii}(2,2);
xA(ii) = Triplets{ii}(2,3);
yC(ii) = Triplets{ii}(1,1);
yB(ii) = Triplets{ii}(1,2);
yA(ii) = Triplets{ii}(1,3);
yb(jj) = F_points{jj}(2,1);
xb(jj) = F_points{jj}(1,1);
end
end
xyb = [yb; xb]'; % Augmented matrix array = xyb
% Memory allocation:
xye1 = zeros(2,N);
xye2 = zeros(2,N);
xye3 = zeros(2,N);
for k = 1:N
xye1(:,k) = [Triplets{k}(1,3), Triplets{k}(2,3)];
xye2(:,k) = [Triplets{k}(1,2) Triplets{k}(2,2)];
xye3(:,k) = [Triplets{k}(1,1) Triplets{k}(2,1)];
end
XYE0 = [xye1', xye2', xye3']; % Augmented matrix array = 'xye'
%% Part 2. Compute Angles
% Memory allocation:
CosTheta1 = zeros(1,N);
ThetaInDegrees1=zeros(1,N);
CosTheta2 = zeros(1,N);
ThetaInDegrees2 = zeros(1,N);
CosTheta3 = zeros(1,N);
ThetaInDegrees3 = zeros(1,N);
for jj = 1:N
CosTheta1(jj) = dot(XYE0(jj,1:2)-xyb(jj, :),XYE0(jj,3:4)-xyb(jj,:))/(norm(XYE0(jj,1:2)-xyb(jj,:))*norm(XYE0(jj,3:4)-xyb(jj,:)));
ThetaInDegrees1(jj) = acosd(CosTheta1(jj));
CosTheta2(jj) = dot(XYE0(jj,3:4)-xyb(jj, :),XYE0(jj,5:6)-xyb(jj,:))/(norm(XYE0(jj,3:4)-xyb(jj,:))*norm(XYE0(jj,5:6)-xyb(jj,:)));
ThetaInDegrees2(jj) = acosd(CosTheta2(jj));
CosTheta3(jj) = dot(XYE0(jj,5:6)-xyb(jj, :),XYE0(jj,1:2)-xyb(jj,:))/(norm(XYE0(jj,5:6)-xyb(jj,:))*norm(XYE0(jj,1:2)-xyb(jj,:)));
ThetaInDegrees3(jj) = acosd(CosTheta3(jj));
degsum(jj)=ThetaInDegrees1(jj)+ThetaInDegrees2(jj)+ThetaInDegrees3(jj);
end
good luck
  4 Commenti
Sulaymon Eshkabilov
Sulaymon Eshkabilov il 24 Set 2019
Ok. Glad that can of some help. Hit accept of this answer, pl.
Make sure that your formualtions are giving the values in degrees not radians. If other way around, then you should use conversion the values rad2deg(). With rad2deg() you will get the values in degrees. Always watch out the size match.
Steve
Steve il 24 Set 2019
I don't think the angles are in radians or degrees. My original code portion for finding the angles gave true angles in degrees. Attached are the new input files; they may not be in the correct row/column arrangements, and that may be causing the problem with the angles. How does it look to you?
Thanks!

Accedi per commentare.

Categorie

Scopri di più su Programming in Help Center e File Exchange

Prodotti


Release

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by