Azzera filtri
Azzera filtri

How to change input values for weight classfication layer.

6 visualizzazioni (ultimi 30 giorni)
I am using weigth classfication fucntion which given as example in MATALAB documentaion.
But whenI use it in my network it gives error "Error using 'backwardLoss' in Layer weightedClassificationLayer. The function threw an error and could not be executed". I think the error is due to input value but i am not sure where to change these valuse. The weighted classification function works well according to input valuse assigned in example.
the code I am using for weighted classification function
%%%%%%
classdef weightedClassificationLayer < nnet.layer.ClassificationLayer
properties
% Row vector of weights corresponding to the classes in the
% training data.
ClassWeights
end
methods
function layer = weightedClassificationLayer(classWeights, name)
% layer = weightedClassificationLayer(classWeights) creates a
% weighted cross entropy loss layer. classWeights is a row
% vector of weights corresponding to the classes in the order
% that they appear in the training data.
%
% layer = weightedClassificationLayer(classWeights, name)
% additionally specifies the layer name.
% Set class weights.
layer.ClassWeights = classWeights;
% Set layer name.
if nargin == 2
layer.Name = name;
end
% Set layer description
layer.Description = 'Weighted cross entropy';
end
function loss = forwardLoss(layer, Y, T)
% loss = forwardLoss(layer, Y, T) returns the weighted cross
% entropy loss between the predictions Y and the training
% targets T.
N = size(Y,4);
Y = squeeze(Y);
T = squeeze(T);
W = layer.ClassWeights;
loss = -sum(W*(T.*log(Y)))/N;
end
function dLdY = backwardLoss(layer, Y, T)
% dLdX = backwardLoss(layer, Y, T) returns the derivatives of
% the weighted cross entropy loss with respect to the
% predictions Y.
[~,~,K,N] = size(Y);
Y = squeeze(Y);
T = squeeze(T);
W = layer.ClassWeights;
dLdY = -(W'.*T./Y)/N;
dLdY = reshape(dLdY,[1 1 K N]);
end
end
end

Risposta accettata

Pujitha Narra
Pujitha Narra il 11 Ott 2019
This is a way to initialize 'classWeights'
classWeights = 1./countcats(YTrain);
classWeights = classWeights'/mean(classWeights);
and you can use it here:
Network = [
imageInputLayer([256 256 3],"Name","imageinput")
convolution2dLayer([3 3],2,"Name","conv","Padding","same")
reluLayer("Name","relu")
softmaxLayer("Name","softmax")
weightedClassificationLayer(classWeights)
];
I think this should solve the problem.
  6 Commenti
Raza Ali
Raza Ali il 14 Ott 2019
I am using two different image types( two classes A and B). Each Image has size: 256 by 256 by 3
%%%Start
imds = imageDatastore('Images','IncludeSubfolders',true,'LabelSource','foldernames');
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized');
YTrain=imdsTrain.Labels;
YTrain = removecats(YTrain);
classWeights = 1./countcats(YTrain)
classWeights = classWeights'/mean(classWeights)
Network = [
imageInputLayer([256 256 3],"Name","data")
convolution2dLayer([3 3],16,"Name","conv1","BiasLearnRateFactor",2,"Stride",[4 4])
reluLayer("Name","relu1")
crossChannelNormalizationLayer(5,"Name","norm1","K",1)
maxPooling2dLayer([3 3],"Name","pool1","Stride",[2 2])
convolution2dLayer([3 3],32,"Name","conv","Padding","same")
reluLayer("Name","relu5")
maxPooling2dLayer([3 3],"Name","pool5","Stride",[2 2])
fullyConnectedLayer(2,"Name","fc8","BiasLearnRateFactor",2)
softmaxLayer("Name","prob")
weightedClassificationLayer("classWeights")
];
Options = trainingOptions('sgdm', ...
'MiniBatchSize',5, ...
'MaxEpochs',3, ...
'Shuffle','every-epoch', ...
'InitialLearnRate',1e-4, ...
'ValidationData',imdsValidation, ...
'ValidationFrequency',2100, ...
'Verbose',true, ...
'Plots','training-progress');
TrainedNetwork = trainNetwork(imdsTrain,Network,Options);

Accedi per commentare.

Più risposte (2)

Pujitha Narra
Pujitha Narra il 10 Ott 2019
Hi Raza Ali,
Can you mention how are you using 'weightedClassificationLayer' in your network? Assuming you want to know the inputs to the constructor of this class:
'classWeights' and the layer's 'name' are the only inputs.
'classWeights'-. classWeights is a row vector of weights corresponding to the classes in the order that they appear in the training data.
'name' -additionally specifies the layer name.
Also this example might be of help
Hope this helps!
  8 Commenti
Raza Ali
Raza Ali il 11 Ott 2019
Network = [
imageInputLayer([256 256 3],"Name","imageinput")
convolution2dLayer([3 3],2,"Name","conv","Padding","same")
reluLayer("Name","relu")
softmaxLayer("Name","softmax")
weightedClassificationLayer('classWeights')
];
evelyn
evelyn il 29 Apr 2024
'ClassWeights', classWeights is a row vector of weights corresponding to the classes in the order that they appear in the training data.
how about the train data is shuffle? how to do that?

Accedi per commentare.


Ashwin
Ashwin il 13 Lug 2022
Try to use classWeights' instead of classWeights
And check if it works

Categorie

Scopri di più su Image Data Workflows in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by