Optimisation of function containing matrix

10 visualizzazioni (ultimi 30 giorni)
I am having trouble optimising this system. I have been trying to use fmincon without success.
C is a 16x16 matrix, mo and v and 1 are 16x1 vectors. I want to choose mo to maximise x = c*mo+v
The constraints are: the components of mo must add to one (I think I've done this one)
and each component of x should be equal, that is x1=x2=...=x16 where x=c*mo+v (I have no idea how to represent this)
fun = @(mo) -C*mo-v;
A=[];
b=[];
Aeq= ones(1,16);
beq= 1;
lb = zeros(16,1);
ub = ones(16,1);
m0 = 1/16*ones(16,1);
mo = fmincon(fun,m0,A,b,Aeq,beq,lb,ub)
Please let me know where I'm going wrong...
  3 Commenti
Isabelle Steinmann
Isabelle Steinmann il 10 Ott 2019
C =
Columns 1 through 10
1.0003 0.0245 0.0052 0.0172 0.0273 0.0220 0.0171 0.0208 0.0073 0.0218
0.0054 0.9994 0.0100 0.0326 0.0329 0.0369 0.0173 0.0155 0.0224 0.0269
0.0152 0.0097 1.0001 0.0173 0.0374 0.0220 0.0222 0.0208 0.0174 0.0219
0.0001 -0.0000 0.0000 1.0005 0.0255 0.0054 0.0103 0.0101 0.0007 0.0057
0.0001 -0.0000 0.0000 0.0056 1.0006 0.0103 0.0052 0.0050 0.0055 0.0204
0.0001 -0.0003 -0.0000 0.0059 0.0108 1.0007 0.0009 -0.0097 0.0156 0.0054
0.0001 -0.0001 -0.0000 0.0112 0.0110 0.0255 1.0005 0.0001 0.0359 0.0105
0.0001 -0.0001 -0.0000 0.0112 0.0110 -0.0041 0.0257 1.0004 0.0262 0.0156
0.0000 -0.0003 -0.0000 0.0205 0.0008 0.0005 0.0005 0.0002 1.0005 0.0003
0.0001 -0.0001 -0.0000 0.0157 0.0011 0.0105 0.0056 0.0053 0.0108 1.0004
0.0001 -0.0002 -0.0000 0.0111 0.0210 0.0157 0.0162 0.0152 0.0213 0.0009
0.0000 -0.0003 -0.0000 0.0107 0.0154 0.0007 0.0150 -0.0000 0.0155 0.0054
0.0050 -0.0104 -0.0001 0.0213 0.0212 0.0164 0.0456 0.0151 0.0169 0.0159
-0.0001 -0.0200 -0.0001 0.0095 -0.0004 0.0092 -0.0102 -0.0052 -0.0006 0.0047
0.0000 -0.0101 -0.0001 0.0102 0.0054 0.0151 0.0006 -0.0099 0.0002 0.0001
0.0100 -0.0000 0.0000 0.0158 0.0309 0.0058 0.0007 0.0005 0.0057 0.0158
Columns 11 through 16
0.0213 0.0179 0.0317 0.0165 0.0165 0.0064
0.0068 0.0479 0.0367 0.0270 0.0316 0.0213
0.0216 0.0228 0.0316 0.0167 0.0164 0.0163
0.0005 0.0055 0.0002 0.0003 0.0002 0.0155
0.0007 0.0007 0.0003 0.0003 0.0002 0.0203
0.0152 0.0307 0.0204 0.0109 0.0107 0.0002
0.0158 0.0264 0.0008 0.0110 0.0007 0.0104
0.0158 0.0212 0.0054 0.0009 0.0055 0.0106
0.0149 0.0205 0.0053 0.0203 0.0053 0.0002
0.0205 0.0060 0.0056 0.0005 0.0054 0.0152
1.0009 0.0214 0.0204 0.0010 0.0058 0.0006
0.0002 1.0008 0.0004 0.0153 0.0200 0.0005
0.0159 0.0169 1.0008 0.0257 0.0202 0.0009
-0.0150 0.0041 0.0043 0.9998 -0.0103 -0.0002
0.0002 0.0151 0.0199 0.0004 1.0003 -0.0000
0.0154 0.0108 0.0057 0.0104 0.0054 1.0008
v is a zero vector
Fabio Freschi
Fabio Freschi il 11 Ott 2019
It is better to attach data as mat file

Accedi per commentare.

Risposta accettata

Fabio Freschi
Fabio Freschi il 10 Ott 2019
Modificato: Fabio Freschi il 11 Ott 2019
While waiting for the data, I try to solve one of the questions. you can set the missing constraint as
x1-x2 = 0
x2-x3 = 0
...
so, let's call M the matrix with +1 -1 along the diagonal
M = diag(ones(16,1),0)+diag(-ones(15,1),1);
The last row has to be removed
% remove last row
M = M(1:end-1,:);
now, x = C*mo+v and we want M*x = 0, so Mx = M*C*mo+M*v = 0 and the new equality constraint is
% new constraints
Aeq2 = M*C;
beq2 = -M*v;
% append
Aeq = [Aeq; Aeq2];
beq = [beq; beq2];
However, the main problem is that your objective function returns a vector and not a scalar quantity. I don't know your problem but is the sum of all x a feasible objective function to maximize?
fun = @(mo) -sum(C*mo+v);
In this case the solution is
>> mo
mo =
0.0549
0.0481
0.0524
0.0668
0.0672
0.0644
0.0615
0.0627
0.0661
0.0655
0.0623
0.0653
0.0570
0.0737
0.0689
0.0633
>> sum(mo)
ans =
1
>> C*mo
ans =
0.0720
0.0720
0.0720
0.0720
0.0720
0.0720
0.0720
0.0720
0.0720
0.0720
0.0720
0.0720
0.0720
0.0720
0.0720
0.0720
  4 Commenti
Fabio Freschi
Fabio Freschi il 11 Ott 2019
Isabelle, is it what you want?
Isabelle Steinmann
Isabelle Steinmann il 11 Ott 2019
Yes, that's perfect. Thank you

Accedi per commentare.

Più risposte (0)

Categorie

Scopri di più su Systems of Nonlinear Equations in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by