how can i find the intersection point between the two curves and the minimum point to the other curve?

2 visualizzazioni (ultimi 30 giorni)
k1=10^-4;k2=2*10^5
k2 = 200000
d=0.08;
a=50*10^-6:1*10^-6:100*10^-6;
cr =k1./a;
cf =k2*d.*a;
ctot =cr+cf;
plot(a,cr,a,cf,a,ctot)
title('optimal')
xlabel('cross section area')
ylabel('costs')
legend('cr','ctot','cf')
0001 Screenshot.png

Risposta accettata

Image Analyst
Image Analyst il 26 Ott 2019
Do you want the (harder) analytical answer (like from the formula) or the (easier) digital answer from the digitized vectors, like
distances = abs(cf-cr)
[minDistance, indexAtMin] = min(distances);
y1AtMin = cf(indexAtMin)
y2AtMin = cr(indexAtMin)
aAtMin = a(indexAtMin)
hold on;
line([aAtMin, aAtMin], ylim);
  4 Commenti

Accedi per commentare.

Più risposte (1)

mohamed asran
mohamed asran il 9 Nov 2020
clc
clear all
r=0.05;
l=0.01;
st=0.0001;
v=220;
Kf=18;
j=3;
Tl=60;
i=0;
w=0;
I=[];
W=[];
t=[];
for dt=0:0.0001:1
I=[I i];
t=[t dt];
W=[W w];
i=i+(((v-r*i)-(Kf*w)/l)*st);
w=w+((((Kf*i)-Tl)/j)*st);
end
plot(t,W,'linewidth',4)
xlabel('time (sec)','fontsize','18','fontweight','b');
ylabel('SPEED (rpm)','fontsize','22','fontweight','b');
title('Dynamic model of separately excited dc motor under constant excitation');
axis([0 0.1 0.5])
gri;d
plot(t,I,'linewidth',4)
xlabel('time (sec)','fontsize','18','fontweight','b');
ylabel('current (A)','fontsize','22','fontweight','b');
title('current response of rl circuit');
axis([0 0.1 0.5])

Categorie

Scopri di più su Mathematics and Optimization in Help Center e File Exchange

Tag

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by