solving nonlinear overdetermined equations using newton raphson
23 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
can any one suggest me the matlab code for newton raphson to solve overdetermined equations given below
(X(1)-500)^2+(X(2)-900)^2+(X(3)-20200)^2-500^2
(X(1)-600)^2+(X(2)-1000)^2+(X(3)-20100)^2-1000^2
(X(1)-1000)^2+(X(2)-700)^2+(X(3)-23000)^2-1200^2
(X(1)-100)^2+(X(2)-800)^2+(X(3)-22000)^2-1300^2
solve X(1),X(2),X(3)
0 Commenti
Risposte (1)
arushi
il 3 Set 2024
Hi Archa,
Given your system of equations, the goal is to find (X = [X(1), X(2), X(3)]) that minimizes the residuals of the equations. Here's how you can implement this approach in MATLAB:
function X = solveOverdeterminedSystem()
% Initial guess for X
X = [0, 0, 0];
% Tolerance and maximum number of iterations
tol = 1e-6;
maxIter = 100;
for iter = 1:maxIter
% Evaluate the function vector
F = [
(X(1)-500)^2 + (X(2)-900)^2 + (X(3)-20200)^2 - 500^2;
(X(1)-600)^2 + (X(2)-1000)^2 + (X(3)-20100)^2 - 1000^2;
(X(1)-1000)^2 + (X(2)-700)^2 + (X(3)-23000)^2 - 1200^2;
(X(1)-100)^2 + (X(2)-800)^2 + (X(3)-22000)^2 - 1300^2
];
% Evaluate the Jacobian matrix
J = [
2*(X(1)-500), 2*(X(2)-900), 2*(X(3)-20200);
2*(X(1)-600), 2*(X(2)-1000), 2*(X(3)-20100);
2*(X(1)-1000), 2*(X(2)-700), 2*(X(3)-23000);
2*(X(1)-100), 2*(X(2)-800), 2*(X(3)-22000)
];
% Compute the change in X using the normal equations approach
deltaX = -pinv(J' * J) * J' * F;
% Update X
X = X + deltaX';
% Check for convergence
if norm(deltaX) < tol
fprintf('Converged to [%f, %f, %f] after %d iterations.\n', X(1), X(2), X(3), iter);
return;
end
end
error('Did not converge within the maximum number of iterations');
end
Hope this helps.
0 Commenti
Vedere anche
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!