How to apply The Kaiser rule in PCA?
6 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
MUHAMMAD ALKHUDAYDI
il 11 Dic 2019
Modificato: Shubh Sahu
il 30 Gen 2020
Hi,
In MATLAB there is a bulid function to apply principle component analysis PCA. However, I have a problem on applying The Kaiser rule which drop all components with eigenvalues under 1. For Example I want to apply this method on the data:
X = [1 2 3 4 5 ; -1 -3 -1 2 4 ; -2 1.5 3 2 -9 ; 1 -1 0.25 2.3 2.2];
[coeff,newdata,latend,tsd,variance] = pca(X)
Please can some one help me on this. Many thanks.
0 Commenti
Risposta accettata
Shubh Sahu
il 30 Gen 2020
Modificato: Shubh Sahu
il 30 Gen 2020
Hey!
Instead of calculating PCA go with SVD. Take under the under root of sigmas 's' and now you have eigenvalues. Check for kaiser rule and select the column with eigenvalue less than 1
X = [1 2 3 4 5 ; -1 -3 -1 2 4 ; -2 1.5 3 2 -9 ; 1 -1 0.25 2.3 2.2];
[u,s,v] = svd(X)
Please refer to this link for further information
0 Commenti
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Dimensionality Reduction and Feature Extraction in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!