Deep Neural Network Tranining
    2 visualizzazioni (ultimi 30 giorni)
  
       Mostra commenti meno recenti
    
Hi,
I am having trouble in running the modified DeepLearningSpeechRecognitionExample_all that utilzis all the data:
     "bird",...
    "cat",...
    "dog",...
    "down",...
    "eight",...
    "five",...
    "four",...
    "happy",...
    "house",...
    "left",...
    "marvin",...
    "nine",...
    "one",...
    "right",...
    "seven",...
    "sheila",...
    "six",...
    "stop",...
    "three",...
    "two",...
    "zero",...
    "bed",...   
    "go",...
    "no",...
    "off",...
    "on",...
    "tree",...
    "up",...
    "wow",...
and modifyed parametrs in training (double number of feature vectors) that is:
        segmentDuration = 1;
        frameDuration   = 0.020; %0.025;
        hopDuration     = 0.005; %0.010; <---------------- doubleing the sigze of feature vectors 
        numBands        = 40;    %40;
 as well as more layers of neural network and larger feature vector size.
                    numF         = 40; %12;
                    layers = [
                        imageInputLayer(imageSize)
                        convolution2dLayer(3,numF,'Padding','same')
                        batchNormalizationLayer
                        reluLayer
                        %tanhLayer
                        maxPooling2dLayer(3,'Stride',2,'Padding','same')
                        convolution2dLayer(3,2*numF,'Padding','same')
                        batchNormalizationLayer
                        reluLayer
                        %tanhLayer
                        maxPooling2dLayer(3,'Stride',2,'Padding','same')
                        convolution2dLayer(3,3*numF,'Padding','same')
                        batchNormalizationLayer
                        reluLayer
                        %tanhLayer
                        maxPooling2dLayer(3,'Stride',2,'Padding','same')
                        convolution2dLayer(3,4*numF,'Padding','same')
                        batchNormalizationLayer
                        reluLayer
                        %tanhLayer
                        maxPooling2dLayer(3,'Stride',2,'Padding','same')
                        convolution2dLayer(3,5*numF,'Padding','same')
                        batchNormalizationLayer
                        reluLayer
                        %tanhLayer
                        maxPooling2dLayer(3,'Stride',2,'Padding','same')
                        convolution2dLayer(3,4*numF,'Padding','same')
                        batchNormalizationLayer
                        reluLayer
                        %tanhLayer
                        maxPooling2dLayer(3,'Stride',2,'Padding','same')
                        convolution2dLayer(3,3*numF,'Padding','same')
                        batchNormalizationLayer
                        reluLayer
                        %tanhLayer
                        maxPooling2dLayer(3,'Stride',2,'Padding','same')
                        convolution2dLayer(3,2*numF,'Padding','same')
                        batchNormalizationLayer
                        reluLayer
                        %tanhLayer
                        maxPooling2dLayer(3,'Stride',2,'Padding','same')
                        convolution2dLayer(3,numF,'Padding','same')
                        batchNormalizationLayer
                        reluLayer
                        %tanhLayer
                        convolution2dLayer(3,numF,'Padding','same')
                        batchNormalizationLayer
                        reluLayer
                        %tanhLayer
                        convolution2dLayer(3,numF,'Padding','same')
                        batchNormalizationLayer
                        reluLayer
                        %tanhLayer
                        dropoutLayer(dropoutProb)
                        fullyConnectedLayer(numClasses)
                        softmaxLayer
                        weightedClassificationLayer(classWeights)];
The code fials with this error:
                   ...done
                    Training error: 1.2073%
                    Validation error: 3.8136%
                    Network size: 4772.4043 kB
                    Error using classify (line 149)
                    The length of GROUP must equal the number of rows in TRAINING.
                    Error in DeepLearningSpeechRecognitionExample_all (line 457)
                        [YPredicted,probs] = classify(1,x,"ExecutionEnvironment",'cpu');
I need a profesional help to figure out why am getting the length difference? Note that the reson why I am not able to track that problem down is due to the fact that this program requires at least a half-day  to run in my computer before it failes. 
Thank you
--Veton
1 Commento
Risposte (0)
Vedere anche
Categorie
				Scopri di più su Deep Learning Toolbox in Help Center e File Exchange
			
	Prodotti
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

