Avoid training certain neurons

7 visualizzazioni (ultimi 30 giorni)
Hamid Moazed
Hamid Moazed il 22 Dic 2019
Commentato: Hamid Moazed il 23 Dic 2019
Using the Deep Learning Toolbox, I wish to construct a simple feed-forward network for a simulation, however assume I have already trained one of the hidden neurons (out of several) with the correct weights and biases and I don't want them to change during training. How can I make this single specific neuron be "constant" and not get retrained with new wights and biases while the rest of the network is being trained?

Risposta accettata

Hiro Yoshino
Hiro Yoshino il 23 Dic 2019
There is an option to keep specific layers' learning rates low so you can fix them as they are.
for example
fullyConnectedLayer(<outputsize>, 'WeightLearnRateFactor', 0, 'BiasLearnRateFactor', 0)
This way, you would multiply zero to the global learning rate, which is set via trainingOptions function, and thus the learning rates of the weights in the fully-connected-layer are set as zero.
  1 Commento
Hamid Moazed
Hamid Moazed il 23 Dic 2019
Thanks for the quick and thorough response; yes, that makes total sense, why didn't I think of that! Thans again for getting me unstuck.

Accedi per commentare.

Più risposte (0)

Categorie

Scopri di più su Sequence and Numeric Feature Data Workflows in Help Center e File Exchange

Prodotti


Release

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by