how to fit exponential distribution function on data?

14 visualizzazioni (ultimi 30 giorni)
The vector m follows the truncated exponential equation (F_M) and it is shown by solid black line in figure. I intend to fit an exponential distribution function to data and find the parameter lambda (1/mean). Even though I've used fitdist(x,distname), the fitted exp. dist. shown in dashed line which is way different from the data. here is the code:
M_min=4.5; M_max=8.0;
m=M_min:0.0001:M_max;
a=4.56; b=1.0;
alpha=a*log(10);beta=b*log(10);
nu=exp(alpha-beta*M_min);
F_M=(1-exp(-beta*(m-M_min))) / (1-(exp(-beta*(M_max-M_min)))); % CDF of Mag.
pd = fitdist(m','Exponential');
figure(1); plot(m,1-F_M,'-','linewidth',2);
hold on; plot(m,1-cdf(pd,m),'--');
legend('data','fitted dist')

Risposte (2)

Walter Roberson
Walter Roberson il 26 Gen 2020
You do not have an exponential distribution. (1 minus an exponential) is not an exponential.
On the other hand if you fit using the equation
a*exp(-b*x)+c
instead of
a*exp(-b*x)
then you get pretty much a perfect fit.
  1 Commento
Mos_bad
Mos_bad il 26 Gen 2020
All I want to do is to devide vertical axis to 1000 intervals and pick a random value of magnitude (horizental axis) at each interval. Kind of Latin hypercube sampling.

Accedi per commentare.


Image Analyst
Image Analyst il 26 Gen 2020

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by