Working with LSTM and Bayes Optimization

15 visualizzazioni (ultimi 30 giorni)
I am trying to use bayesoptimization to tune the parameters
optimvars = [
optimizableVariable('InitialLearnRate',[1e-2 1],'Transform','log')
optimizableVariable('L2Regularization',[1e-10 1e-2],'Transform','log')];
layers = [ ...
sequenceInputLayer(inputSize,'Normalization','zscore')
bilstmLayer(numHiddenUnits,'OutputMode','last')
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
maxEpochs =25;
options = trainingOptions('adam',...
'ExecutionEnvironment','cpu',...
'GradientThreshold',1,...
'MaxEpochs',maxEpochs,...
'MiniBatchSize',miniBatchSize, ...
'SequenceLength', 'longest', ...
'Shuffle','every-epoch', ...
'Verbose', 1, ...
'InitialLearnRate',optimvars.InitialLearnRate,...
'L2Regularization',optimvars.L2Regularization,...
'Plots','training-progress');
objFcn = makeObj(Xtrain,YTrain);
bayesObj = bayesopt(objFcn,optimvars, ...
'MaxTime', 14*60*60, ...
'IsObjectiveDeterministic',false,...
'UseParallel',false);
Where am i going wrong as i get the following error:
Unrecognized method, property, or field 'InitialLearnRate' for class 'optimizableVariable'.
Error in AllVsIndx (line 236)
'InitialLearnRate',optimvars.InitialLearnRate,...
The documentation regarding bayesian optimization is very vague especially when it comes to implementation with LSTM networks
Any help would be appreciated
Thanks

Risposta accettata

Jorge Calvo
Jorge Calvo il 27 Mag 2021
If you have R2020b or later, you can use the Experiment Manager app to run Bayesian optimization to determine the best combination of hyperparameters. For more information, see https://www.mathworks.com/help/deeplearning/ug/experiment-using-bayesian-optimization.html.
  1 Commento
CHRISTOPHER MILLAR
CHRISTOPHER MILLAR il 27 Mag 2021
Thanks Jorge
I have just installed R2021a on my machine and will take advantage of this new app

Accedi per commentare.

Più risposte (2)

Don Mathis
Don Mathis il 25 Feb 2020

Jorge Calvo
Jorge Calvo il 5 Ott 2021
I thought you would like to know that, in R2021b, we are included an example for training long short-term memory (LSTM) networks using Bayesian optimization in Experiment Manager:
I hope you find it helpful!
  1 Commento
CHRISTOPHER MILLAR
CHRISTOPHER MILLAR il 5 Ott 2021
Hi jorge,
Yes I have been using it and it makes the optimization process very easy to use.
Thanks for updating the thread with this information.
Regards
Chris

Accedi per commentare.

Categorie

Scopri di più su Problem-Based Optimization Setup in Help Center e File Exchange

Tag

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by