Matlab code for plotting roc curve for object detection and classification using a deep learning resnet50 model

2 visualizzazioni (ultimi 30 giorni)
I need to plot an roc curve from the below code.Any input on how to go about it will be greatly appreciated.
imds = imageDatastore(imageFolder, 'LabelSource', 'foldernames', 'IncludeSubfolders',true); % Determine the smallest amount of images in a category minSetCount = min(tbl{:,2});
% Limit the number of images to reduce the time it takes % run this example. maxNumImages = 100; minSetCount = min(maxNumImages,minSetCount);
% Use splitEachLabel method to trim the set. imds = splitEachLabel(imds, minSetCount, 'randomize');
% Notice that each set now has exactly the same number of images. countEachLabel(imds) % Load pretrained network net = resnet50() [trainingSet, testSet] = splitEachLabel(imds, 0.3, 'randomize'); % Create augmentedImageDatastore from training and test sets to resize % images in imds to the size required by the network. imageSize = net.Layers(1).InputSize; augmentedTrainingSet = augmentedImageDatastore(imageSize, trainingSet, 'ColorPreprocessing', 'gray2rgb'); augmentedTestSet = augmentedImageDatastore(imageSize, testSet, 'ColorPreprocessing', 'gray2rgb'); % Get the network weights for the second convolutional layer w1 = net.Layers(2).Weights;
% Scale and resize the weights for visualization w1 = mat2gray(w1); w1 = imresize(w1,5);
% Display a montage of network weights. There are 96 individual sets of % weights in the first layer. figure montage(w1) title('First convolutional layer weights') featureLayer = 'fc1000'; trainingFeatures = activations(net, augmentedTrainingSet, featureLayer, ... 'MiniBatchSize', 32, 'OutputAs', 'columns'); % Get training labels from the trainingSet trainingLabels = trainingSet.Labels;
% Train multiclass SVM classifier using a fast linear solver, and set % 'ObservationsIn' to 'columns' to match the arrangement used for training % features. classifier = fitcecoc(trainingFeatures, trainingLabels, ... 'Learners', 'Linear', 'Coding', 'onevsall', 'ObservationsIn', 'columns'); % Extract test features using the CNN testFeatures = activations(net, augmentedTestSet, featureLayer, ... 'MiniBatchSize', 32, 'OutputAs', 'columns');
% Pass CNN image features to trained classifier predictedLabels = predict(classifier, testFeatures, 'ObservationsIn', 'columns');
% Get the known labels testLabels = testSet.Labels;
% Tabulate the results using a confusion matrix. confMat = confusionmat(testLabels, predictedLabels);
% Convert confusion matrix into percentage form confMat = bsxfun(@rdivide,confMat,sum(confMat,2)) % Display the mean accuracy mean(diag(confMat))
testImage = readimage(testSet,1); testLabel = testSet.Labels(1) % Create augmentedImageDatastore to automatically resize the image when % image features are extracted using activations. ds = augmentedImageDatastore(imageSize, testImage, 'ColorPreprocessing', 'gray2rgb');
% Extract image features using the CNN imageFeatures = activations(net, ds, featureLayer, 'OutputAs', 'columns'); % Make a prediction using the classifier predictedLabel = predict(classifier, imageFeatures, 'ObservationsIn', 'columns')

Risposte (1)

sinan salim
sinan salim il 15 Ago 2021
wow zero answer ,,i have same problem

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by