How can I plot a graph with a time dependent ode45?

4 visualizzazioni (ultimi 30 giorni)
clc
clear all
A = 0.05; %Excitation Amplitude
l_r = 2; %Wave length of the road
v = 45; %Speed(m/s)
P = l_r/v; %Period
Om = 1/P*2*pi; %Forcing Frequency
%Om = %0.07m,2m,45m/s
k_l = 26400; %Linear stiffness
m = 483; %Mass
d = -0.1; %Stretching condition
l = 0.5; %Length of the spring
k_s = -(k_l*(l-d))/(4*d); %Spring stiffness
f_n = sqrt(k_l/m)/(2*pi); %Natural frequency
%%
f = @(t,x) [ x(2); ...
-(4*k_s*(x(1)-A*sin(Om*t))*(sqrt((l-d)^2 + (x(1)-A*sin(Om*t))^2) - l))/ ...
(m*(sqrt((l-d)^2 + (x(1)-A*sin(Om*t))^2))) ];
T = 50;
x0 = [0,0];
[t,x] = ode45(f,[0,T],x0);
Response_amp = max(x(:,1)) - min(x(:,1));
plot(t,x(:,1))
xlabel('Time (s)')
ylabel('Amplitude (m)')
title('When d=-0.1', 'fontsize', 20)
set(gca,'FontSize',15)
Hi, all. This is my ode45 code. If I chagne A (Excitation Amplitude), Response_amp will have a different value. I wish to plot this relationship as A vs Response_amp.

Risposta accettata

Ameer Hamza
Ameer Hamza il 16 Mar 2020
Modificato: Ameer Hamza il 16 Mar 2020
You can visualize such relation with 3D plots
l_r = 2; %Wave length of the road
v = 45; %Speed(m/s)
P = l_r/v; %Period
Om = 1/P*2*pi; %Forcing Frequency
%Om = %0.07m,2m,45m/s
k_l = 26400; %Linear stiffness
m = 483; %Mass
d = -0.1; %Stretching condition
l = 0.5; %Length of the spring
k_s = -(k_l*(l-d))/(4*d); %Spring stiffness
f_n = sqrt(k_l/m)/(2*pi); %Natural frequency
%%
fig = figure();
ax = axes();
hold(ax);
view([-53 33]);
grid on
A_array = 0.05:0.05:0.3; %Excitation Amplitude
T = 15;
x0 = [0,0];
for i=1:numel(A_array)
A = A_array(i);
f = @(t,x) [ x(2); ...
-(4*k_s*(x(1)-A*sin(Om*t))*(sqrt((l-d)^2 + (x(1)-A*sin(Om*t))^2) - l))/ ...
(m*(sqrt((l-d)^2 + (x(1)-A*sin(Om*t))^2))) ];
[t, x] = ode45(f,[0,T],x0);
Response_amp = max(x(:,1)) - min(x(:,1));
plot3(t, A*ones(size(t)), x(:,1), 'LineWidth', 1);
end
xlabel('Time (s)')
ylabel('A (m)')
zlabel('Amplitude (m)')
title('When d=-0.1')
  2 Commenti
Donghun Lee
Donghun Lee il 16 Mar 2020
Omg.. Thank you sooo much. You've just saved my life! Thanks!!

Accedi per commentare.

Più risposte (0)

Categorie

Scopri di più su Numerical Integration and Differential Equations in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by