How to write a custom non linear function for data fitting?

2 visualizzazioni (ultimi 30 giorni)
I wrote this script to fit some data with a custom nonlinear function, but I'm getting an almost flat line instead than an exponential.
myfittype=fittype('(N/(1 + exp((-N)*(b)*(t - tf))))','dependent',{'n'},'independent',{'t'},'coefficients',{'N','b','tf'});
h=fit(t,n,myfittype)
plot(h,t,n)

Risposte (1)

the cyclist
the cyclist il 23 Mar 2020
Modificato: the cyclist il 23 Mar 2020
I don't have the Curve Fitting Toolbox, so I can't really comment on your current code. But, if you also have the Statistics and Machine Learning Toolbox, you could try the fitnlm function.
% Some pretend data
t_data = (-2 : 0.1 : 10)';
f_data = 8 ./ (1 + exp(-2*(t_data - 5))) + 0.2*randn(size(t_data));
% Fitting function
f = @(F,t) F(1)./(1 + exp(-F(2).*(t - F(3))));
% Initial guess at parameters
beta0 = [1 1 1];
% Fit the model
mdl = fitnlm(t_data,f_data,f,beta0);
% Plot the fit against the data
figure
hold on
plot(t_data,f_data,'.')
plot(t_data,predict(mdl,t_data))
  3 Commenti
John D'Errico
John D'Errico il 23 Mar 2020
Note that nonlinear fits often require an intelligent choice of starting values. The curvefitting toolbox uses random choice of initial values for general models if you give it nothing.

Accedi per commentare.

Categorie

Scopri di più su Get Started with Curve Fitting Toolbox in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by