How to use softmax, Loss function(negative log probability) in classification
5 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Hello.
I want to classify videos.
After computation of eucldean distance, I want to use softmax and Loss function(negative log probability) for classification.
Can I get some idea to make the code?
clear all
close all
data = csvread('outfile.csv');
values = data(:,1:end-1);
labels = data(:,end);
avg = splitapply(@(x) mean(x,1), values, labels+1);
mean_class1 = avg(1,:);
mean_class2 = avg(2,:);
mean_class3 = avg(3,:);
mean_class4 = avg(4,:);
mean_class5 = avg(5,:);
bend_query = values(1,:);
run_query = values(2,:);
walk_query = values(3,:);
skip_query = values(4,:);
wave_query = values(5,:);
% calculate euclidean distance
euclidean_bend = pdist2(mean_class1, bend_query, 'euclidean');
euclidean_run = pdist2(mean_class2, run_query, 'euclidean');
euclidean_walk = pdist2(mean_class3, walk_query, 'euclidean');
euclidean_skip = pdist2(mean_class4, skip_query, 'euclidean');
euclidean_wave = pdist2(mean_class5, wave_query, 'euclidean');
0 Commenti
Risposta accettata
Shishir Singhal
il 7 Apr 2020
For classification,
softmax creates probability scores for each category.
since your predictions and targets follows different probability distributions. You can use cross entropy loss for that. It is kind of negative log probability function.
Refer to this documentation for the implementation: https://www.mathworks.com/help/deeplearning/ref/dlarray.crossentropy.html
0 Commenti
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Image Data Workflows in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!