machine learning image processing
2 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
I am new in machine and deep learning. can any one help me to create coding for race annotation like while, black, indian.. form face skin colour?
Create a cross-fold evaluation protocol based on the race annotation, i.e. your should create for folds of the data with each fold containing all instances of one race. The evaluation should then train the model on 4 of the folds (i.e. 4 races), and the test on the unseen race. This should be repeated such that all folds are the test set in turn.
0 Commenti
Risposte (1)
Rajani Mishra
il 16 Apr 2020
For cross validation you need to divide your data and use some random part of your data for training and other part of the data for testing and you may do this several times. A popular method is called leave-one-out. Where you divide your data into several chunks and use all except one to train and the last one to test.
This procedure has a single parameter called k that refers to the number of groups that a given data sample is to be split into. As such, the procedure is often called k-fold cross-validation. When a specific value for k is chosen, it may be used in place of k in the reference to the model, such as k=10 becoming 10-fold cross-validation
So in your case following are the steps I recoganized:
1. Split data into 4 groups each having all samples of a given race
2. For each group:
a. Take the group as a test data set
b. Take the remaining groups as a training data set
c. Fit a model on the training set and evaluate it on the test set
Note: I have written considering that since one group will be test set so it won't be used in training data set. I am not able to clearly undertand from your question but if all groups have to be used for training at a time then iterate with each group as a test set.
Also you can refer to algorithms with k-fold cross validation below:
Hope this helps!
0 Commenti
Vedere anche
Categorie
Scopri di più su Get Started with Statistics and Machine Learning Toolbox in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!