Gauss-Seidel method Help
240 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
kemgi
il 18 Apr 2020
Modificato: Teresa Matthews
il 2 Dic 2023
Hello,
I am hoping someone can assist me with this problem. I created a Gauss-Seidel code that will allow me to solve a set of linear equations, finding x1, x2 x3 and x4. I made two matrices; A=[4 -21 -7 1; -4 0 -3 11 ; 4 -1 10 -1; 151/8 5 8 -3] and b =[11; 15; 19; -12;]. Through using the equatio Ax=b i would be able to find the unknows, which worked using the backslash built in solver. But my code below give 4 values for x but they do not match the reuslts of the built in solver and do not equate when substitued back into a line of the linear equations.
A major aspect of the code is that it is meant to make your matrix diagonally dominant to solve.
My code is as follows:
function gauss-seidel
A=input('write matrix a')
b=input('write matrix b')
x=linspace(0,0,length(A))';
n=size(x,1);
normVal=Inf;
nmax=1000; %number of maximum iterations which can be reached%
tol=0.000001; % Tolerence for method%
iter=0;
while normVal>tol && iter<nmax
x_old=x;
[V,A]=eig(A);
TF=isdiag(A);
if TF==0
fprintf('the matrix is not diagonally dominant')
else
for i=1:n
guess=0;
for j=1:i-1
guess=guess+A(i,j)*x(j);
end
for j=i+1:n
guess=guess+A(i,j)*x_old(j);
end
x(i)=(b(i)+guess)/(A(i,i));
end
iter=iter+1;
normVal=norm(x_old-x);
end
end
fprintf('Solution of the system is : ')
for i=1:length(x)
fprintf(' %1.4f ',x(i));
end
fprintf('in %d iterations ',iter)
4 Commenti
John D'Errico
il 11 Nov 2021
If you made a mistake, it is trivial to edit your question to fix it. But many people seem to post the same question as many as 5 or 6 times. If they don't get an answer quickly enough to suit their needs, they just keep posting the same question.
Mahmoud
il 7 Mar 2023
Writing the negative exponent to give the same result as the calculator. Example: 0.3000 * 10^-3 gives a result of 3 * 10^-4
But in MATLAB it gives a very different result. What is the problem here or how to write the equation correctly to give the same value as the calculator
Risposta accettata
Prabhan Purwar
il 22 Apr 2020
Hi,
Refer to the following code:
The following code performs Gauss-Seidel...
clc
clear
close all
A=[5 -2 3 0 6; -3 9 1 -2 7.4; 2 -1 -7 1 6.7; 4 3 -5 7 9; 2 3.5 6.1 -4 -8.1];
b=[-1 2 3 0.5 3.1]';
x=linspace(0,0,length(A))';
n=size(x,1);
normVal=Inf;
nmax=1000; %number of maximum iterations which can be reached%
tol=1e-3; % Tolerence for method%
iter=0;
while normVal>tol && iter<nmax
x_old=x;
for i=1:n
guess=0;
for j=1:i-1
guess=guess+A(i,j)*x(j);
end
for j=i+1:n
guess=guess+A(i,j)*x_old(j);
end
x(i)=(1/A(i,i))*(b(i)-guess);
end
iter=iter+1;
normVal=norm(x_old-x);
end
fprintf('Solution of the system is : \n%f\n%f\n%f\n%f\n%f in %d iterations',x,iter);
Output:
0.551479
0.469276
-0.595161
-0.649082
-0.171448 in 86 iterations
Tips:
The convergence properties of the Gauss-Seidel method are dependent on the matrix A. Namely, the procedure is known to converge if either:
- A is symmetric positive-definite
https://www.mathworks.com/help/matlab/ref/chol.html (chol, only for symmetric matrix) [~,p] = chol(A)
OR
- A is strictly or irreducibly diagonally dominant
(Diagonal Dominant)
The Gauss-Seidel method sometimes converges even if these conditions are not satisfied.
Although you can prove that the methods converge if A has all eigenvalues positive from the above conditions (but not the only convergence criterion).
Hope it helps!!
3 Commenti
Più risposte (1)
Teresa Matthews
il 1 Dic 2023
Modificato: Teresa Matthews
il 2 Dic 2023
You should update the values of x for all elements within the loop. However, to avoid overwriting the current element being updated, you can store the geometry dash world temporarily and then assign them to x after the loop completes.
function gauss-seidel
A=input('write matrix a')
b=input('write matrix b')
x=linspace(0,0,length(A))';
n=size(x,1);
normVal=Inf;
nmax=1000; %number of maximum iterations which can be reached%
tol=0.000001; % Tolerence for method%
iter=0;
while normVal>tol && iter<nmax
x_new = x;
[V,A]=eig(A);
TF=isdiag(A);
if TF==0
fprintf('the matrix is not diagonally dominant')
else
for i=1:n
guess=0;
for j=1:i-1
guess=guess+A(i,j)*x_new(j);
end
for j=i+1:n
guess=guess+A(i,j)*x(j);
end
x_new(i)=(b(i)+guess)/(A(i,i));
end
x = x_new;
iter=iter+1;
normVal=norm(x-x_new);
end
end
fprintf('Solution of the system is : ')
for i=1:length(x)
fprintf(' %1.4f ',x(i));
end
fprintf('in %d iterations ',iter)
0 Commenti
Vedere anche
Categorie
Scopri di più su Operating on Diagonal Matrices in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!